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ABSTRACT Due to the complexity of genotype–phenotype relationships, simultaneous analyses of genomic associations with multiple
traits will be more powerful and informative than a series of univariate analyses. However, in most cases, studies of genotype–
phenotype relationships have been analyzed only one trait at a time. Here, we report the results of a fully integrated multivariate
genome-wide association analysis of the shape of the Drosophila melanogaster wing in the Drosophila Genetic Reference Panel.
Genotypic effects on wing shape were highly correlated between two different laboratories. We found 2396 significant SNPs using a
5% false discovery rate cutoff in the multivariate analyses, but just four significant SNPs in univariate analyses of scores on the first
20 principal component axes. One quarter of these initially significant SNPs retain their effects in regularized models that take into
account population structure and linkage disequilibrium. A key advantage of multivariate analysis is that the direction of the estimated
phenotypic effect is much more informative than a univariate one. We exploit this fact to show that the effects of knockdowns of
genes implicated in the initial screen were on average more similar than expected under a null model. A subset of SNP effects were
replicable in an unrelated panel of inbred lines. Association studies that take a phenomic approach, considering many traits simulta-
neously, are an important complement to the power of genomics.
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UNDERSTANDING the inheritance and evolution of com-
plex traits is an important challenge for geneticists and

evolutionarybiologists alike.Adetailedunderstandingofhow
genetic variation affects complex traits is important for the
treatment of disease, for our attempts to control the evolution
of useful or dangerous organisms, and for understanding and
predicting evolution over long timescales. Here, we describe

the results of a genome-wide association study (GWAS) of the
Drosophila melanogaster wing, a model complex trait. We
undertook this study as part of our attempt to understand
the evolution of the fly wing.

The quantitative genetics of the wing is relatively well
studied (Mezey and Houle 2005; Houle and Fierst 2013),
yet many aspects of the evolution of wings over short and
long timescales are not consistent with the abundant varia-
tion we observe (Houle et al. 2003, 2017; Carter and Houle
2011; Pitchers et al. 2013; Bolstad et al. 2015). This suggests
that we need amore detailed understanding of the genotype–
phenotype map (Lewontin 1974), the relationship between
genetic variation and the phenotype, to understand the in-
heritance and evolution of the wing. Fortunately, the fly wing
is also a model system for the study of developmental genet-
ics (e.g., de Celis and Diaz-Benjumea 2003; Blair 2007;
Wartlick et al. 2011; Matamoro-Vidal et al. 2015), suggesting
that the genetic variation influencing the wing can be fitted
into a causal framework, directing our attention to the critical
aspects of development that enable and shape evolution of
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the wing. We seek to generate a more precise characteriza-
tion of the natural genetic variation influencing wing shape
than has been possible with previous mapping studies, which
utilized far fewer markers than current methods allow
(Weber et al. 1999, 2001; Zimmerman et al. 2000; Palsson
et al. 2004; Dworkin et al. 2005; Mezey et al. 2005; Dworkin
and Gibson 2006).

The evolutionary patterns that we seek to explain concern
the relationship of different parts of the wing, rather than the
presence or magnitude of single traits. We canmeasure many
aspects of wing shape (Houle et al. 2003), but these are in-
terrelated due to the connections among the cells that make
up the wing during development and in the adult. Any de-
velopmental change that affects one aspect of the wing, such
as the length of a particular vein, must also affect adjacent
areas of the wing; any one wing measurement incompletely
captures wing variation (Mezey and Houle 2005). This re-
ality of wing morphology is a challenge for association anal-
yses because forward genetic analyses are generally built on
analyses of single traits.

Despite growing enthusiasm for a comprehensive phe-
nomic approach (Houle 2010; Houle et al. 2010), the ma-
jority of GWASs that include more than one trait use
multiple, univariate analyses for each site, rather than a
single multivariate analysis (e.g., Teslovich et al. 2010;
Battle et al. 2014). Statisticians have long appreciated the
value of genuinely multivariate approaches to association
studies (Lange et al. 2003; Shriner 2012), leading to a re-
cent proliferation of multivariate methods and software
(O’Reilly et al. 2012; Stephens 2013; van der Sluis et al.
2013; Scutari et al. 2014; Zhou and Stephens 2014;
Schaid et al. 2016; Porter and O’Reilly 2017). While these
methods are diverse, a consistent result is that multivariate
analyses increase power to detect associations and the bi-
ological usefulness of the results (Porter and O’Reilly 2017).
Given these advantages, it is unfortunate that just a few
genuinely multivariate empirical association studies have
been published (e.g., Anderson et al. 2011; Topp et al.
2013). The majority of published multivariate analyses are
examples in the method development papers, instead of
fully realized studies.

In this paper, we apply a fully integrated multivariate
analysis of the fly wing, drawing on genotypes in the
Drosophila Genome Reference Panel (DGRP; Mackay et al.
2012). We analyze the genetic architecture of segregating
variation for a 58-dimensional representation of fly wing
shape (Figure 1A) plus size. The goal of a GWAS is to de-
termine which SNPs are most likely to have a causal effect on
the phenotypes under study, which we refer to as causal
SNPs. The challenges are that we have only studied a modest
number of genotypes relative to the number of variable sites
in the genome and the dimension of the phenotype we mea-
sured. Both of these factors make it important to account for
the presence of population structure and SNPs in linkage
disequilibrium (LD) with potentially causal SNPs before mak-
ing predictions about the causes of phenotypic variation.

The ideal analysis of such data would be a single mixed-
model analysis that simultaneously accounts for the effects of
all SNPs andpopulation structure. Unfortunately, limited data
preclude fitting such a model genome-wide. Even fitting
mixed models incorporating a small number of SNPs proved
to be impractical for reasons that we will return to in the
Discussion. Given this situation, we took a two-stage ap-
proach. First, we used an approximation of a mixed-model
analysis to find those SNPs with the greatest ability to predict
wing phenotypes. This SNP-by-SNP approach will include
many false positives due to LD and population structure,
and will overestimate effect sizes due to the Beavis effect
(Beavis 1994, 1998; Xu 2003). In the second stage, we fit
multivariate LASSO (Least Absolute Shrinkage and Selection
Operator) regressions (Tibshirani 1996; Hastie and Qian
2016) incorporating SNPs in LD and measures of population
structure. The LASSO results in regularization or shrinkage of
effect sizes, which is expected to help moderate overestima-
tion of effect sizes, including the Beavis effect. It also results
in algorithmic variable selection, that is, only a subset of the
predictors in the model may be estimated to have nonzero
effects.

We confirm that the inheritance of wing shape is highly
polygenic and implicatemanypathways known tobe involved
in wing development, as well as novel candidate genes. We
then experimentally validate associations using RNA interfer-
ence (RNAi)-mediated gene knockdowns to examine the de-
gree of replicability for the direction of phenotypic effects. In
addition, we replicate some associations using an indepen-
dent panel of inbred lines.

Materials and Methods

To assist in following the interlocking set of analyses that we
performed, Figure 2 gives an overview to the flow of infor-
mation from preexisting stocks and data through to the re-
sults presented.

Drosophila strains

For the GWAS, we used the DGRP, a set of inbred lines
established from iso-female lines collected at a farmer’s mar-
ket in Raleigh, NC (Mackay et al. 2012). We obtained phe-
notypic data from 184 lines scored in Freeze 2 of the DGRP
genotyping (Huang et al. 2014).

For the replication analysis, female D. melanogaster were
collected in the summer of 2004 at a peach orchard in West
End, North Carolina (NC2) by I. Dworkin and in a blueberry
field in Cherryfield Maine (ME) by Marty Kreitman (Goering
et al. 2009; Reed et al. 2010). All lines were full-sibling inbred
for 15–20 generations. In total, 190 lines were used (�50%
from each population).

Rearing, handling of flies, and imaging of wings

Wings of DGRP flies were phenotyped independently in
both the Houle laboratory in Florida and the Dworkin lab-
oratory in Michigan. To allow us to evaluate the robustness
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of the wing phenotypes to experimental conditions, we
did not standardize rearing conditions. Each laboratory
reared flies and imaged wings according to its own stan-
dard. These conditions differed in the following key
respects.

In the Houle laboratory, flies were reared at 25� and 55%
relative humidity in six-dram vials on a corn meal–sucrose
medium preserved with propionic acid, no live yeast added.
Wings of live flies were imaged using the “Wingmachine”
system (Houle et al. 2003). In the Dworkin laboratory, flies
were reared at 24� in bottles on a cornmeal–molasses–yeast-
based medium with carrageenan as a gelling agent, and
propionic acid and methyl paraben as preservatives to
which live yeast was added. Dworkin laboratory flies were
preserved in 70% ethanol, the wings were dissected, and
mounted prior to imaging and analysis. See Supplemental
Material, File S1, Supplemental Materials, Methods and Re-
sults (SMR) for additional details on the rearing of flies and
imaging of wings.

In total, we obtained phenotypic data from 24,672 wings
from 184 DGRP lines, with an average sample size of 134.1
wings/line. One-hundred and sixty-three lines were mea-
sured in both laboratories. We obtained , 40 wing images
(minimum 15) for only four lines.

The ME-NC2 panel flies were reared in the Dworkin lab-
oratory at 25� in a 12:12 light/dark cycle at constant 50%
humidity, similar to previously described experiments
(Dworkin and Gibson 2006). We dissected �20 wings/repli-
cate/line for a total of 7968 males from 153 lines.

Morphometric data

To capture landmark and semilandmark data from the
recorded images, we followed a modified protocol from
Houle et al. (2003). Splining and error correction was accom-
plished in the Java program Wings 3.72 (Van der Linde
2004–2014). Wings fits nine cubic B-spline functions to the
veins and margins of wings in the saved TIFF images (Figure
1A), using the locations of the two starting guide points to
initiate fitting.

The programCPR (Márquez 2012–2014)wasused to extract
14 landmark and 34 semilandmark positions from the fitted
splines (as shown in Figure 1A). The combined data from the
DGRP, validation, and replication data sets (a total of 66,890
wings) were subjected to generalized Procrustes superimposi-
tion (Rohlf and Slice 1990), which scales forms to the same size,
translates their centroids to the same location, and rotates them
to minimize the squared deviations around each point. This
separates the useful size and shape information from the nui-
sance parameters introduced by the arbitrary location and rota-
tion of the specimens within the images. The resulting data set
has 58 independent shape variables, which we summarized
using principal component (PC) analysis (Table S2). Centroid
size was natural log transformed to put it on the same scale as
the shape variables. Additional details are given in the SMR.

DGRP genotype data

We used the publicly available Freeze 2 genotypes from
February 2013 (Huang et al. 2014) (ftp://ftp.hgsc.bcm.
edu/DGRP/freeze2_Feb_2013/vcf_files/freeze2.vcf.gz).

Figure 1 Capturing wing shape with a spline model. Closed circles are landmarks formed by the intersection of splined veins and open circles are
semilandmarks used to represent the locations of veins. (A) Splines fitted to a typical D. melanogaster wing. Colored lines are the splines. (B) Blue overlay
represents the range of shape variation among Drosophila Genome Reference Panel lines.
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Our analyses were based primarily on FlyBase GenBank Re-
lease 5, but coordinates have been converted to Release 6 for
presentation here. We used only calls of homozygous geno-
types with genotypic phred scores$ 20 and treated others as
missing data. All polymorphisms are referred to as SNPs in-
cluding those involving multiple nucleotides. If two or more
variants were found at the same site, we analyzed the one
with the highest minor allele count, treating rarer variants as
equivalent to the reference.

As noted by Huang et al. (2014), some pairs of lines are
more closely related than random. We captured population
structure using PC analysis with smartpca (Patterson et al.
2006). Some of this population structure is due to three com-
mon inversions found in the DGRP lines: In(2L)t, In(2R)NS,
and In(3R)Mo (Corbett-Detig and Hartl 2012; Langley et al.
2012; Huang et al. 2014; Houle andMárquez 2015).We used
the results of Houle and Márquez (2015) to infer the karyo-
types for each of the 184 lines in our analysis.

Initial analyses to choose sites for replication in the
ME-NC2 were carried out using Freeze 1 data from August
2010, available at https://www.hgsc.bcm.edu/arthropods/
drosophila-genetic-reference-panel.

Genetic variation for wing shape

We estimated the genetic variance–covariance matrix of the
DGRP line effects using restricted maximum likelihood
implemented in Wombat (Meyer 2006-2018, 2007). Wom-
bat is limited to analysis of 40 variables, so we analyzed the
first 39 PCs of shape, plus the natural log of centroid size.

These 39 PCs capture 88% of the total phenotypic variance.
We compared the fits of full (40-d) and reduced-rank model
likelihoods (Kirkpatrick and Meyer 2004; Meyer and Kirkpa-
trick 2005, 2008). We fitted a pooled sex covariance matrix,
treating laboratory, sex, and rearing block as fixed effects. To
account for relatedness among lines, we calculated a gener-
alized relationship matrix based on all SNPs in the Freeze 2
data set with minor allele counts of five or more using the
program smartpca in the EIGENSOFT package (Patterson
et al. 2006; https://www.hsph.harvard.edu/alkes-price/
software/). The line effect was assumed to be distributed
proportionally to this relationship matrix with diagonals set
to 1, and coefficients , 0.01 set to 0, using the RAN GIN
option in Wombat.

LD and cluster analysis

LD complicates the interpretation of significant associations
uncovered in a GWAS. We quantified LD as the squared
gametic correlation between sites. To help us interpret our
results, we calculated the gametic correlation, r, between all
sites judged as significant at a false discovery rate (FDR) of
5% (see below) and all other sites throughout the genome
using the algorithm described in Houle and Márquez (2015).
We retained a list of all those pairs where r2. 0.5. This cutoff
was chosen based on simulations that show that LD of r2 ,
0.5 will infrequently generate false positives for a SNP in LD
with a SNP that has a phenotype effect size typical of those
detected in this study in a similar number of lines (Houle and
Márquez 2015).

Figure 2 Relationship between
experiments and analyses. Ellipses
represents stocks or results that
are the input to this work. Boxes
with no fill are experiments or
preliminary analyses only described
in Materials and Methods. Filled
boxes generate the major results
presented. DGRP, Drosophila Ge-
nome Reference Panel; GO, gene
ontology; LASSO, Least Absolute
Shrinkage and Selection Operator;
LD, linkage disequilibrium; MAC,
minor allele count; MANOVA, mul-
tivariate analysis of variance analy-
sis; ME-NC, Maine-North Carolina;
PCA, principal component analysis.
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To help interpret which SNPs are most likely to cause
variation in phenotype, we carried out an LD-based cluster
analysis on SNPs significantly associated with phenotype in
themultivariate analysis of variance (MANOVA) analysis. The
algorithm used to determine cluster membership is described
in SMR.

Detecting phenotypic associations

Meanwing forms for each combination of line, laboratory, and
sex were used in the association analyses. Our analyses in-
cluded the 2,517,547 SNPs where the minor allele was ho-
mozygous in at least five lines and where$ 120 phenotyped
lines had genotypes called.

For our initial MANOVA association analysis, effects of
SNPs on morphometric variation were quantified using a
multivariate linear model taking into account the effects of
laboratory, sex, SNP, and line:

Yhijk ¼ ai þ bj þ gk þ abij þ agik þ bgjk þ aðLÞhi
þ aðLÞbhij þ aðLÞghik þ ehijk (1)

where a, b, and g represent vectors of fixed effects of the ith

SNP, jth sex, and kth laboratory, respectively, a(L) represents
the random effect of the hth inbred line nested within SNP, e
is the residual vector, and higher-order terms represent inter-
actions between these factors. To compare the results of
multivariate and univariate analyses, we also calculated uni-
variate tests using the model in Equation 1. Attempts to fit
this model as a true mixed model in SAS proved to be in-
feasible due to computational demands. We approximated
the mixed-model tests and estimation using the procedures
described in the SMR.

When one of the three common inversions was present in a
line, we treated all genotype calls in the inversion and regions
that are inhighLDwith the inversionasmissing. For In(2R)NS
and In(2L)t, this included sites between the breakpoints
inferred by Corbett-Detig et al. (2012) plus 20 kb either side.
On chromosome 3R, we masked all sites with coordinates .
16 Mb in lines inferred to carry an In(3R)Mo genotype
(Corbett-Detig and Hartl 2012; Houle and Márquez 2015).

Least-squares estimates of SNP effect vectors were
obtained from a simpler model neglecting interactions of
SNP effects with sex and laboratory,

Yhijk ¼ ai þ bj þ gk þ abij þ bgjk þ aðLÞhi þ ehijk (2)

whereeffect size is the length (2-norm)of this vectorof effects,
kaik.

To compare the amount of variance explained in different
analyses, we projected each original 59-d effect vector into
the 40-d space defined by the G matrix, yielding a new
vector ai�40. The total amount of variance explained is
pð12 pÞkai�40k2, where p is minor allele frequency (MAF).
To control the FDR, we applied the Storey and Tibshirani
(2003) approach as implemented in the R package fdrtools
(Strimmer 2008).

LASSO regressions

SNP associations can be explained if the SNP directly causes
phenotypic variation, or if it is in LDwithother causal SNPs. To
include these confounding elements in our model, we first
collapsed our data so thatwe could use a regressionmodel. To
do this,we calculated the vector of least-squaresmeans for the
shape and size variables from a linear model with laboratory,
sex, and DGRP line as main effects.

We then carried out LASSO multivariate multiple regres-
sions with one significant (focal) SNP, plus a family of com-
peting predictors, comprising three sets of variants. The first
group consists of all significant SNPs that were annotated as
beingwithin 2 kb of the transcript of a gene that the focal SNP
is either in, closest to, or is within 2 kb of the focal SNP. The
secondgroupconsists of all SNPsanywhere in thegenomethat
have LD r2 . 0.5 with any of the first group of significant
SNPs. The third set of predictors are the scores on the 13 sig-
nificant genotypic PCs with more variation than expected
under the null hypothesis of no population structure. See
the SMR for details of this analysis.

Regularization was implemented using multivariate
LASSO regression calculated in the R package GLMNET
(Friedman et al. 2010) with the “mgaussian” option (Hastie
and Qian 2016). For each SNP model, the shrinkage param-
eter was chosen by fivefold cross-validation. Additional de-
scription of the LASSO and its implementation is in the SMR.

Gene ontology analysis

For each SNP significant in theMANOVAanalysis at an FDRof
5%, we downloaded the full gene ontology (GO) information
for the nearest genes up- and downstream, on both the
negative andpositive strands.We identified the closest coding
region to each of these SNPs for subsequent GO analyses. For
the LASSO-significant SNPs,we usedWebGestalt (Wang et al.
2017) to test for enrichment of biological process GO cate-
gories. We compared nonredundant biological processes
with five or more genes assigned against the entire genome.
The Benjamini and Hochberg (1995) FDR correction was
used to adjust for multiple tests, assuming a hypergeometric
distribution.

Quantitative knockdowns of gene activity for validation

We knocked down expression of genes of interest using the
progesterone-inducible Geneswitch Gal4 construct (GS,
Roman et al. 2001) engineered to be under the regulation
of a ubiquitous tubulin driver (Tub-5 GS), generously fur-
nished by Scott Pletcher. GS was used to drive expression of
interfering RNA for a gene of interest (UAS-[GOI] RNAi)
constructs obtained from the Transgenic RNAi Project (TRiP)
(Ni et al. 2008; in a yv background), and the Bloomington
Drosophila Stock Center or the Vienna Drosophila RNAi Cen-
ter (Dietzl et al. 2007; in a w1118 background). The list of
RNAi stocks used is in File S5.

Tocarryoutaknockdownexperiment,wecrossedTub-5GS
andUAS-[GOI]RNAi stocks, andallowedtheseflies to layeggs
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onmedia containing the progesterone analog mifepristone at
concentrations of 0, 0.3, 0.9, and 2.7 mM. The parameters of
the multivariate regression of phenotype on mifepristone
were retained as the effect of the manipulated gene of in-
terest. All knockdown experiments were conducted in the
Houle laboratory. Additional details of these analyses are in
the SMR.

Comparing knockdown vectors to SNP vectors

Wecompared the directions of phenotypic effects using vector
correlations, as described in the SMR. The statistical signifi-
cance of vector correlations between the knockdown vectors
and LASSO-significant SNP vectors was determined by com-
paring the observed correlations to the distribution of corre-
lationsunder thenull hypothesis of no relationship. Even if the
SNPs have no real effects, the inferred vectors will tend to fall
in the more variable regions of phenotype space, so to ensure
that the random vectors were appropriately sampled we took
two approaches. First, we assumed that the estimated direc-
tions of effects in the overall sample of SNPs were represen-
tative of the random distribution of effect directions. Second,
we randomly sampled 40-d vectors from a multivariate nor-
mal distribution with mean 0 and covariance equal to G, and
compared these to the observed vectors projected into the
corresponding 40-d subspace. These two approaches yielded
similar results. We report the results using the random sam-
ple of inferred vectors, but both approaches agreed in all the
specific cases discussed.

To test for significant SNP-wise correlations, we com-
pared the quantiles of vector correlations between each
knockdown vector and 10,000 random vectors. To test for
significant experiment-wise correlations, we calculated
10,000 sets of 580 correlations of random SNP effects with
eachknockdownvector. Thequantiles of themaximumof the
580 correlations were calculated and compared to the ob-
served vector correlations. In both cases, the quantiles differ
considerably with the direction of the knockdown effect;
vectors close to the principal axis of genetic variation (PC1)
aremuchmore common in the estimated set of vectors and so
have quantiles considerably larger than those in less-common
directions. File S5 includes both the quantiles for random sets
of 580 vector correlations and the vector correlations of each
knockdown vector with the first five PCs of the among-line
variance matrix.

Replication tests with the ME-NC2 populations

Basedon apreliminary analysis of Freeze 1genotypic data,we
chose 389 SNPs for reanalysis in an independent sample of
flies.Wecompileda list of SNPswith the smallest associatedP-
values, removing those where the SNP’s effect was unstable
(LogRatio of Pwithin 1.5 SD of 0) and ranking the remainder
by effect size.We then excluded SNPswhoseminor allele was
present in more than nine DGRP lines that were highly cor-
related with other SNPs and those far from any gene tran-
script. Of these 389 SNPs, 342 were included in the Freeze
2 data that we analyzed for associations.

Genotyping for replication cohort: The genotyping for our
replication SNP set was carried out by KBiosciences (now
LGC Genomics) using “Kompetitive Allele-Specific PCR” as-
says. This is a fluorescence-based genotyping technology
that uses allele-specific primers, making it generally more
accurate for smaller jobs than high-throughput methods.
We designed primers based on 100 bp of the D. mela-
nogaster reference genome from FlyBase (version 5.41)
on either side of each SNP. Samples of genomic DNA
extracted from 15 flies from each of the ME-NC2 lines were
submitted to KBiosciences. Several duplicated control sam-
ples (same genotype but independently labeled) were in-
cluded to assess any technical variation in genotyping. We
obtained genotype data for 300 SNPs with minor allele
counts sufficient for analyses in both the DGRP and
ME-NC2 data sets.

Analysis: To test for significant associations with the
ME-NC2 panel, we used the same pipeline and analysis
framework as described above for the DGRP. The model
included population (ME or NC2) and SNP as fixed effects,
with lines nestedwithin SNPs as a random effect. Laboratory
and sexwere not included as this studywas carried out solely
in the Dworkin laboratory, and onlymales were phenotyped.
Toprovide a null distribution for testingwhether the average
vector correlation of the 27 matching LASSO-significant
DGRP SNP effects with the ME-NC2 effects was greater than
expected, we computed 10,000means of groups of 27 vector
correlations between random subsets of DGRP effects and
the ME-NC2 effects.

Data availability

Data and programs on which this study is based have been
archived in Figshare https://doi.org/10.25386/genetics.
6790526.

Results

High repeatability for wing shape across laboratories

Of the 184 DGRP lines phenotyped, 163 were measured in
both theDworkin andHoule laboratories. Themeans and SDs
of the variables by sex and laboratory are in File S2. Wing
shape has considerable variation among lines (Figure 1B and
Figure 3A). As described in the Materials and Methods, each
laboratory used different rearing conditions, and imaging
hardware. Despite these environmental differences, line ef-
fects on wing shape have a high degree of interlaboratory
repeatability with respect to both effect sizes (Figure 3A)
and directions (Figure S1A). However, wing size was weakly
correlated across laboratories (Figure 3B). This is likely to be
due to genotype–environment interactions with laboratory
rearing practices, rather than measurement error, as repeat-
ability of wing size within a laboratory is high (Figure S1B).
A MANOVA on line–sex–laboratory means shows that
the effects of laboratory [Wilk’s l = 0.0026, F = 3014.6,
d.f. = (59,460), sex (Wilk’s l = 0.027 and F = 275.9] and
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laboratory by sex interactions (Wilk’s l= 0.35 and F= 14.2)
are all highly significant (P , 0.0001), reflecting subtle dif-
ferences in means across laboratories.

Genetic variance in wing shape in the DGRP

To verify the presence of genetic variance in wing size and
shape, we estimated the variance–covariance matrices in
wing size and shape, assuming that it is proportional to the
genomic relatedness matrix. Due to software limitations, we
could test for genetic variance in only 40 dimensions (out of
59 possible), so we chose to fit the first 39 PC scores for wing
shape, plus ln centroid size. A model with genetic variance in
all 40 possible dimensions fitted better than models with
39 dimensions (Akaike Information Criterion Corrected
(AICC), DAICC = 1466). This is strong evidence that at least
40 independent aspects of wing shape are affected by geno-
typic variation in the DGRP sample. Estimates of theGmatrix
in both 40-d space and the original x–y coordinate space are
given in File S2.

Chromosomal inversions influence wing shape, but
Wolbachia does not

Three inversion karyotypes—(In(2L)t, In(2R)NS, and
In(3R)Mo)—were found in more than seven of the DGRP
lines that we phenotyped (Huang et al. 2014; Houle and
Márquez 2015). Approximately half of the DGRP lines carried
the intracellular parasite Wolbachia (Huang et al. 2014). We
conducted MANOVAs on the effects of inversion genotypes
and Wolbachia status, with the results shown in Table 1.
Each of the three inversions has a highly significant effect
on wing shape–size, but Wolbachia infection status was not
significant.

Basic GWAS analysis

We carried out individual MANOVAs of the effect of genotype
on wing shape for each of the 2,517,547 polymorphisms with

aminor allele count$ 5. To pick SNPs for additional analyses,
we used the FDR algorithm of Storey and Tibshirani (2003).
A total of 2396 sites had significant effects using a 5% FDR
cutoff (q-value, 0.05). The Storey and Tibshirani algorithm
estimates that the P-values can be explained by mixture of
h0 = 71.5% SNPs with no phenotypic effect, with the remain-
der having some effect. Figure 4A shows a Manhattan plot of
the multivariate results. A list of the significant sites, test
statistics, effect sizes, and variance explained, plus informa-
tion about genes implicated, are given in File S3.

We calculated the genetic variance in shape–size explained
by each of the significant SNPs in the 40-d subspace for which
we can estimateG as a proportion of the trace ofG. Estimated
effect sizes are modest and no single SNP is estimated to
explain . 3.6% of the variance. In addition, the estimated
effect sizes are clearly too large on average, as the median
percentage of variance explained is 1.3% (mean is 1.4%).
There are two known causes for the upward bias in effect
size. First, sampling variation causes effects for SNPs judged
to be significant to be overestimated (Beavis 1994, 1998; Xu
2003). Second, these analyses do not compensate for the
effects of LD and relatedness among lines, which we return
to below. These results are consistent whether considering
the shape-only data, or shape and size simultaneously, which
are almost perfectly correlated (0.99).

A quantile–quantile plot of the P-values is shown in Figure
5. For sites with MAF , 0.15, the distribution shows clear
evidence of substantial deviation from the expected uniform
distribution throughout the range of P-values. We interpret
this as largely due to spreading the signal of true effects to the
large number of sites in LD with rare alleles (see below). The
P-values are much closer to the null distribution at sites with
MAF . 0.15. This distribution is also consistent with a very
large number of sites each having small phenotypic effects.
We return to these issues below.

Figure 3 Interlaboratory repeat-
ability. (A) High repeatability of
line effect sizes for shape across
laboratories. (B) Low repeatability
of size across laboratories, despite
high intralaboratory repeatability
(Figure S1B).
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Comparing multivariate and univariate analyses

To understand the relative power of themultivariate analysis,
we carried out univariate analyses of each SNP on the scores
on PC1 through PC20. When we applied the Storey and
Tibshirani (2003) FDR algorithm independently to each of
the 20 sets of P-values, we observed four significant SNPs
on PC1 (shown as green dots in Figure 4) and none on the
other 19 axes at an FDR of 5%. Just one of these sites is also
significant at the FDR 5% level in the multivariate analysis
(3L:17987278, in an intron of Eip75B).

To further compare themultivariate andunivariate results,
we also applied the same critical P-value identified as the FDR
5% cutoff in the multivariate analysis (P= 0.00007) to all of
the univariate analyses. A total of 6990 SNPs were identified
as significant at P , 0.00007 in at least one (of the 20)
univariate analyses. Only 139 of these were also significant
in the multivariate analyses. Figure 4B shows the genomic
locations of the 565 sites significant at P = 0.00007 on PC1.

The discrepancy between the identities of SNPs implicated
in the univariate and multivariate analyses was unexpected,
and we investigate the possible reasons in Figure 6. The two
reference lines show the mean multivariate effect sizes for all
SNPs and for the MANOVA-significant SNPs only. Unsurpris-
ingly, significant SNPs have larger effect sizes. The red
squares show the effect sizes on each of the first 20 PCs for
univariate-significant SNPs (at P , 0.00007) while the gray
boxes show the total multivariate effect sizes for those same
SNPs. Effects of univariate-significant SNPs are unusually
concentrated in the direction of the vector on which they
are significant. This is particularly apparent for high-ranked
PCs (PC1, PC2, etc.) where the univariate effect is a very large
proportion of the total multivariate effect of that SNP, as
demonstrated by how close the red squares are to the gray.
For SNPs significant on low-ranked PCs (PC20, PC19, etc.),
the multivariate vector lengths are close to the average mul-
tivariate vector length of all SNPs. A very different pattern is
apparent in the univariate effects on each PC of MANOVA-
significant SNPs (green diamonds) and of all SNPs (blue cir-
cles). The effects of MANOVA-significant SNPs are modestly
higher than average across all 20 PCs. These comparisons
suggest that the univariate analyses identify SNPs whose ef-
fects are unusually concentrated on just one PC vector, but
are otherwise unremarkable in the full space. This is rein-
forced by the fact that only 24 sites were identified as signif-

icant in two different univariate analyses. In contrast, the
average score of a SNP that is significant in the multivariate
analysis (green diamonds) is modestly higher than average
across the full range of PCs.

As noted in the Introduction, and treated at greater length
in the Discussion, the PCs taken as traits in these analyses are
biologically arbitrary. Furthermore, this would be true of any
set of univariate vectors in wing size–shape space; our expec-
tation is that pleiotropy is the proper null hypothesis of ge-
netic effects on the wing. We have simulated multivariate
analyses of shape data under the additional assumption that
genetics effects are possible in any direction in phenotype
space. These simulations show that MANOVA analyses have
the expected Type I errors. Given this, the lack of correspon-
dence between the multivariate and univariate results can be
explained by the fact each multivariate analysis finds the di-
rection in the phenotypic space that best distinguishes SNPs,
while the univariate analyses sample only a limited set of
directions. We believe that false positives are overrepre-
sented in the SNPs implicated in the univariate relative to
the multivariate analyses.

Correcting for population structure and LD

While the DGRP lines were sampled from a large natural
population, somepairs of lines aremore related than expected
at random (Huang et al. 2014). Our own analysis of just the
184 phenotyped lines found 13 genotypic eigenvectors that
explained more than the expected genetic variance (see the
SMR) and that some, but not all, of this relatedness is due to
inversion polymorphism. There is also substantial LD among
the 184 lines (see the SMR; Huang et al. 2014; Houle and
Márquez 2015; Pool 2015), some of which is due to depar-
tures from this nonrandom coancestry and some due to “rar-
ity disequilibrium” (Houle and Márquez 2015).

These relatedness and LD results suggest that the genes
implicated by the MANOVA results may not play a causal role
in the genetic effects detected. Furthermore, methods for
adjusting the FDR assume that the tests are themselves in-
dependent, which is violated for correlated genotypes. To
further increase the chance of identifying causal SNPs, we
implemented two additional analyses to help judge the likeli-
hood that theMANOVA-significant SNPshada causal effect or
were likely to be closely linked to a causal SNP.

First, we performed a cluster analysis to group the MAN-
OVA-significant SNPs according to their LD. We identified a
total of 862 clusters of SNPs uncorrelated (at r2 $ 0.5) with
any other significant SNPs. There were 659 clusters contain-
ing just one SNP. At the other extreme, two large clusters
contained 236 and 644 SNPs, including correlations over
both short and long distances (. 100 kb). The clusters and
the number of SNPs they contain are shown in Table S3, as
are several other indicators of the extent of LD and clustering
(see the SMR for details).

Second, we performed a series of LASSO multivariate
multiple regressions (Tibshirani 1996; Friedman et al.
2010; Hastie and Qian 2016) to examine the influence of

Table 1 Summary statistics for MANOVAs of the effects of the
three common inversions and Wolbachia infection status on
wing shape–size

Predictor
Numerator

d.f.
Denominator

d.f. Wilk’s l P

In(2L)t 128 94.7 0.364 2.08 3 1027

In(2R)NS 128 93.4 0.475 2.70 3 1023

In(3R)Mo 128 93.8 0.327 4.53 3 1029

Wolbachia 59 124.7 0.660 0.34
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population structure and correlated SNPs on the signal from
each of the 2396 significant SNPs from the MANOVA analy-
sis. In each of these multivariate multiple regression models,
we used both the significant (focal) SNP plus a family of
competitor predictors assembled for that focal SNP. The com-
petitor family consisted of all other MANOVA-significant
SNPs closest to the same gene as the focal SNP, all SNPs
correlated (at r2 $ 0.5) with any of those significant SNPS,
and scores on the 13 significant population structure
eigenvectors.

The focal SNP retained a nonzero phenotypic effect in
580 of the LASSO regressions. We refer to these as LASSO-
significant SNPs. These have nonzero estimates of effect size
(variable glmeffsz) in File S3. When we fit LASSO models of
the focal SNP and the 13 population structure PC scores, just
120 of the models resulted in a 0 focal effect-size estimate.
Sites in LD with the focal SNP are responsible for the majority
of the reduction from 2396 MANOVA-significant SNPs to
580 LASSO-significant SNPs.

In addition tovariable selection, theLASSOalso shrinks the
estimates of effect size, moderating the Beavis effect. The
distribution of MANOVA-significant effect sizes is approxi-
mately unimodal, with amean effect size of 1.094 shape units
(6 0.429 SD and median 1.06) and a minimum effect size of
0.174 shape units. For the same SNPs, the distribution of
LASSO-estimated effect sizes had a very strong mode at
0 due to the many zero estimates; the distribution of nonzero
effect sizes was also approximately exponential with a strong
mode close to 0. The average effect size after the LASSO
analysis was just 0.072 (6 0.177 SD and median 0.0), for
an average reduction in length of 93%. Taking just the
580 SNPs with nonzero effects in the LASSO analyses, the
MANOVA estimates averaged 0.945 shape units (6 0.401 SD
and median 0.893), while the LASSO estimates had a mean

of 0.296 (6 0.252 SD) and a median of 0.225 for an average
reduction in length of 70%. The median proportion of the
40-d G explained by these 580 SNPs was 0.1% (mean 0.2 6
0.3%). The maximum variance explained by one LASSO-
significant SNP was 2.21%.

For SNPs retained in the LASSO analysis, the estimated
direction of SNP effects inmultivariate spacewas usually very
similar to theMANOVAresults. Themedian vector correlation
was 0.97, although correlations as low as 0.18were obtained.
Ninety percent of the vector correlations were . 0.85.

SignificantSNPS inboth theMANOVAandLASSOanalyses
were enriched for rare SNPs. The overall medianMAF is 0.14,
while it is 0.04 for theMANOVA-significant SNPs and 0.06 for
the LASSO SNPs. One potential explanation for this is that
mutation–selection balance on wing shape keeps alleles with
phenotypic effects at low frequencies. The fact that rare al-
leles tended to be dropped in the LASSO analysis is consis-
tent with the higher level of LD for rare SNPs. The LASSO-
significant SNPs were in smaller LD clusters of significant
SNPs (median cluster size 8 forMANOVA vs. 1 for the LASSO),
and had on average much smaller families of correlated SNPs
entered into the multiple multivariate regression models
(median 66 vs. 8).

Known wing development processes implicated by
GO analysis

WeperformedbiologicalprocessGOanalysis for the479genes
implicated by the LASSO analyses and recognized by
WebGestalt. Of these, 336 had biological annotations in
D. melanogaster. We observed significant enrichment of
61 nonredundant biological processes overall (File S4).
Biological processes relevant to wing development are
prominent in these categories, starting with wing devel-
opment (GO 0035220, 42 genes and FDR 1.2 3 1025),

Figure 4 Manhattan plots of the
log10 inverse P-values from multi-
variate analysis (upper panel) and
univariate analysis of PC1 (princi-
pal component 1) (lower panel).
Solid red line is P = 0.00007, the
cutoff for a 5% false discovery
rate (FDR) using the Storey and
Tibshirani analysis of the multivar-
iate data. The same cutoff is also
applied in to the PC1 analysis.
Green points are the four SNPs
that reach the 5% FDR cutoff from
analysis of just the PC1 P-values.
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and including appendage development and growth. Over-
all, 46 of the enriched categories involve aspects of devel-
opment. Comparison to the Kyoto Encyclopedia of Genes
and Genomes database revealed two significantly enriched
pathways. The Hippo pathway, which has a well-known role
in regulating wing growth and integrating inputs from major
wing morphogen pathways, was enriched at FDR = 0.02.
Eight hippo genes were implicated (Actin 5C, dachsous, fat,
friend of echinoid, dally, kibra, stardust, and Grunge) against
an expected number of 1.74. Apoptosis genes were also
enriched (FDR = 0.0007).

Validation of SNP effects by phenotypic effects of
expression knockdowns

As one validation of putative causal SNPs, we utilized quan-
titative knockdowns of gene expression at LASSO-significant
genes using RNAi with a Geneswitch (mifepristone-dependent)
tubulin-GAL4 line (see Supplemental Methods; genes listed
in File S5). As an example, Figure 7A shows the effects
of knockdowns at Egfr on wing shape at four different levels
of mifepristone. To summarize these results, we performed a
multivariate regression of size and shape on mifepristone
levels to obtain a single vector. The Egfr regression vector is
shown in the left wing in Figure 7B. We call the set of phe-
notypic alterations observed on knockdown a “dictionary” of
genetic effects. We note that dictionary knockdowns reduce
gene expression throughout the body during the entire dura-
tion of wing development. Thus, the effects of the knock-
downs may be different from those of SNPs, even if the
regions implicated in our analyses have phenotypic effects
mediated by changes in gene expression.

We compared the directions of effects in the phenotype
space as the absolute value of the vector correlations between
SNPs annotated as closest to a gene with the dictionary effect
of that gene (see SMR). Table 2 gives the results of tests for
greater than expected vector correlations, as well as addi-
tional information about each SNP. Four SNPs of the 26 tested
were significantly correlated at P , 0.05; these suggested

similar effects for genes Egfr, RhoGEF64c, knirps, and MRP
(Multidrug-Resistance like Protein 1). SNP and dictionary ef-
fects at Egfr and kni are shown in Figure 7, B and C. All four of
these genes with significant dictionary correlations are highly
expressed in the wing disc during larval and pupal develop-
ment (O’Keefe et al. 2012).

Egfr, RhoGEF64c, and knirps are each well-known devel-
opmental genes, with known or plausible roles in wing de-
velopment (Gramates et al. 2017). They are each members of
multiple significantly enriched developmental GO categories
enriched for LASSO-significant genes. Egfr is a key receptor of
the MAPK pathway that is involved in the specification of the
primordial wing disc, notum vs. wing determination, and
wing vein development (Guichard et al. 1999; Wang et al.
2000; Paul et al. 2013). Egfr has previously been implicated
in natural variation in wing shape (Palsson and Gibson 2000,
2004; Zimmerman et al. 2000; Palsson et al. 2004; Dworkin
et al. 2005). The gene knirps is an embryonic gap gene that
plays a key role in the development of wing vein L2 (Lunde
et al. 1998, 2003). As shown in Figure 7C, the intersection of
vein L2 with the wing margin shows the largest change for
both the knockdown and the correlated SNP. RhoGEF64c is a
regulatory protein of the Rho GTPase subfamily that regu-
lates intracellular actin dynamics and consequently cell
shape, adhesion, and motility (Gramates et al. 2017).
RhoGEF64c is important in leg morphogenesis (Greenberg
and Hatini 2011), making a connection to wing development
plausible. MRP is an active transmembrane transporter that
has no known connection to development (Gramates et al.
2017).MRP is a member of highly enriched LASSO-significant
biological GO categories concerning response to chemicals
and membrane transport, but nothing closely related to de-
velopment. It is extremely highly expressed in the wing disc
(O’Keefe et al. 2012), as well as in most fly tissues (Gramates
et al. 2017).

In addition to the excess of significant vector correlations,
the overall results show that vector correlations are biased
toward high correlations, as 19 of the 26 SNPs had dictionary
correlations above the median expected under the null hy-
pothesis. To check this,we compared the entire distribution of
observed correlations with random sets of correlations. The
mean of the observed vector correlations was 0.40; the aver-
age random correlation was 0.197, and all of the 1000 sets of
26 random correlations had lower mean values than the
observed.

Vector correlations between gene knockdowns and
other SNP effects

We examined the vector correlations between each of
the dictionary (gene knockdown) vectors and the 580
LASSO-significant DGRP SNPs. Given the large number of
nonindependent tests, significance of the vector correlations
was evaluated using two different approaches (see the SMR).
Vector correlations r . 0.5 are listed in File S6.

The more conservative SNP-set method of determining
significance yielded just five significant vector correlations,

Figure 5 Quantile–quantile plot of observed vs. expected P-values ge-
nome-wide in the multivariate analysis. Black: all SNPs; red: SNPs
with minor allele frequency (MAF) , 0.15; blue: SNPs with MAF . 0.15.
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none of which suggest functional relationships between the
genes involved. Themore liberal SNP-by-SNP correlations did
suggest some intriguing connections that may be worth ex-
ploring in future work.

We highlight a cluster of correlations involving genes with
known interactions between genes in the Notch (N), hippo
(hpo), wingless (wg), and decapentaplegic (dpp) pathways.
Vector correlations among the relevant dictionary and SNP
effects are summarized in Table S1. Representative pheno-
typic effects are shown in Figure S4. Knockdowns of scalloped
(sd), Serrate (Ser), and dachsous (ds) were all reasonably
highly correlated. The transcription factor sd interacts phys-
ically with transcription factor vestigial (vg), whose expres-
sion is a key outcome of the wg, hpo, and dpp pathways
(Matamoro-Vidal et al. 2015), and interacts genetically with
genes in the N, hpo, wg, and dpp pathways (Shyamala and
Chopra 1999; Djiane et al. 2013; Gramates et al. 2017). We
also knocked down Ser, which is a ligand of the Notch protein
(Rebay et al. 1991), and interacts genetically with the vg- and
hpo-pathway genes (Gramates et al. 2017). SNPs in or near
the genes kuzbanian (kuz), mastermind (mam), and Actin5C
(Act5C) show high and significant vector correlations, with
both sd and Ser knockdowns. Proteins coded for by kuz and
mam physically and genetically interact with the N pathway
(Qi et al. 1999; Petcherski and Kimble 2000; Dornier et al.
2012; Yuan et al. 2016; Gramates et al. 2017). Actin interacts
physically with the achaete-scute complex proteins (Hsiao
et al. 2014), which then signal neighboring cells through
the N pathway (Heitzler et al. 1996). While a SNP in the

intron of N was significant in our initial GWAS, it did not
survive in the LASSO analysis (its effect shrank down to
zero). We note SNP-wise significant correlations, ranging
from r = 0.53 to 0.89, between the effect of a SNP near the
gene tout-velu (ttv) and knockdowns of several hpo-pathway
genes (dachs, dachsous, four-jointed, fat, and mob as tumor
suppressor). These are potentially interesting because Ttv en-
codes a glycosyltransferase involvedwith heparin sulfate syn-
thesis, which is known to be involved with diffusion of the
majorwingmorphogens Hedgehog, wg and dpp (Bornemann
et al. 2004; Han et al. 2004; Takei et al. 2004).

Replication in the ME and NC2 populations

Of the 342 Freeze 2 SNPs selected for replication testing in the
ME-NC2 panel, there were 45 significant tests at P , 0.05,
higher than the expected 17 tests. Fifty-five of the 342 were
significant in the MANOVA analyses and 27 were also esti-
mated to have nonzero effects in the LASSO analysis (Table
3). Of these 27, there were 4 nominally significant results at
P, 0.05, higher than the expected 1.35 cases, and 9 had P,
0.1. In addition, 4 of 27 vector correlations between the
LASSO and ME-NC2 phenotypic effects were significant at
P , 0.05.

SNP 2L:19,596,734 was significant in both the LASSO and
theME-NC2 tests. As shown in Figure 8, the vector correlation
is a strikingly high 0.84, higher than any of the 10,000 ran-
dom vector correlations used to judge significance. This SNP
is in an intron of the gene Lar (Leukocyte-antigen-related-
like). Lar is a promising candidate because it regulates sig-
naling through Abl tyrosine kinase, a key component of a
signaling complex that regulates cell adhesion, motility
(Srinivasan et al. 2012; Barlan et al. 2017), and nervous
system morphogenesis (Krueger et al. 1996). Lar is strongly
expressed in the wing disc (O’Keefe et al. 2012).

The second SNPwith a high vector correlation between the
two data sets is in an intron of RhoGEF64c, which was also
implicated by the dictionary vector analyses presented ear-
lier. A SNP in the intron of the well-known regulator of wing-
vein proliferation plexus (Matakatsu et al. 1999) is nearly
significant in the ME-NC2 analysis. A ME-NC2-significant
SNP is in an intron of Dgk, which is conjectured to have a
role in nervous system development (Gramates et al. 2017).
The other SNPs implicated by either significance or high vec-
tor correlations have no known functional connection to
processes of wing development.

The mean vector correlation between ME-NC2 and
LASSO-significant estimates was 0.23, while the mean ran-
dom correlation was 0.21 with an SD of 0.15 over sets of
27 correlations.

Discussion

Our results have implications for the usefulness of multivar-
iate association analyses, for the genetic architecture of quan-
titative traits, inparticular the inheritanceandevolutionof the
D. melanogaster wing, the study of pleiotropy, and for the

Figure 6 Mean measures of multivariate and univariate effect size for
SNPs categorized by significance of the univariate test on each PC using
P = 0.00007 as a cutoff. Gray squares: total multivariate effect size for SNPs
significant in the corresponding univariate analysis; red squares: univari-
ate effect size for SNPs significant in the corresponding univariate analysis
(also shown in Figure 5); green diamonds: univariate effect size score for
SNPs significant in the multivariate analysis; and blue circles: univariate
effect size score for all SNPs. Horizontal reference lines show the mean
multivariate effect size for all SNPs (solid line) and for all SNPs significant
in the multivariate analysis of variance analysis (dashed line). multiv.,
multivariate; PC, principal component; signif., significant.
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study of the genotype–phenotype map. We discuss each of
these in turn.

Multivariate association analyses

Multivariate analyses increase both the power of association
studies and the interpretability of the results obtained over a
series of univariate analyses. For our data, the gain in power in
the multivariate analysis was dramatic. At an FDR of 5%,
2396 SNPs were identified as potentially significant in the
fully multivariate analysis. In comparison, the univariate
analyses of PC scores identified just four significant variants
onPC1, andnoneon thenext19PCswhenusing the sameFDR
algorithm on each axis. When we utilized the P-value esti-
mated from the FDR from the multivariate analysis (P =
0.00007), almost 7000 SNPs were nominally significant,
but just 24 of those had significant effects on two or more
PC axes. It is particularly notable that just 139 SNPs had
significant effects in both the multivariate and at least one

univariate analysis. As discussed above, we interpret this to
mean that the FDR of the more liberal (P= 0.00007) univar-
iate criterion is quite high.

The increasedpowerofmultivariateassociation studieshas
repeatedly been demonstrated in simulation studies using a
variety of statistical methodologies (O’Reilly et al. 2012;
Stephens 2013; van der Sluis et al. 2013; Zhou and Stephens
2014; Márquez and Houle 2015; Porter and O’Reilly 2017).
This, in conjunction with our results, suggests that the expec-
tation of increased power is general. Except in special cases,
any multivariate analysis will be more powerful than the
corresponding set of univariate analyses.

As noted in the Introduction, fullmultivariatemixed-model
analyses might be preferable to the approximate and regres-
sion-based analyses that we actually used. We did attempt to
fit mixed models using R, SAS, GEMMA (Zhou and Stephens
2014), and Wombat (Meyer and Tier 2012), but for various
reasons this proved impossible or impractical due to long run

Figure 7 Wing shape deformations inferred for
gene knockdowns and SNP effects implicating cor-
responding genes. All deformations shown magni-
fied 23 except for knirps knockdown. Deformation
scale is log2, so +0.2 represents a 15% increase in
the corresponding area of the wing. (A) Effects of
different levels of Egfr knockdown on wing shape.
(B) Comparison of knockdown (left) and LASSO SNP
vector (right) for 2R:17440366, which is in an intron
of Egfr. The Egfr knockdown is the regression of the
shape changes shown in (A) on the level of mife-
pristone applied. The correlation between these
vectors is 0.68. (C) Comparison of knockdown of
knirps (left) and LASSO SNP vector for
3L:20685772, 6558-bp downstream from knirps.
The correlation between these vectors is 0.54.
LASSO, Least Absolute Shrinkage and Selection
Operator.
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times. Wombat readily estimates SNP effects but does not
directly estimate P-values for multivariate fixed effects.

A second important advantage of multivariate analyses is
that multivariate effects are far more informative than the set
of yes-or-no decisions about which traits are affected by each
SNP that result from standard univariate testing. Multivariate
effect vectors enable us to assess the overall degree of simi-
larity of effects using the correlation between vectors. We
performed two sets of validation experiments using this ap-
proach and their results provided confirmatory evidence for
the effects of some segregating sites. The phenotypic effects of
knockdowns of genes implicated in the initial GWASprovided
good evidence that SNP effects are overall more similar to
these than expected under the null hypothesis of no similarity.
In several cases, theeffects of particular SNP-knockdownpairs
are individually more similar than random vectors (Figure 7
and Table 2). Replication of SNPs in a second panel of lines
from natural populations from ME-NC2 again suggested that
some SNPs had very similar effects in both mapping
populations.

Inheritance of Drosophila wing shape

Our study implicated a large number of sites as potentially
affectingwing shapeandsize, consistentwithprevious studies
suggesting that the inheritance of wing shape is highly poly-
genic. Previous association studies on aspects ofwing shape in
D. melanogaster have also detected relatively large numbers

of QTL, given the number of markers employed. Weber et al.
(1999, 2001) generated recombinant inbred lines (RILs)
between populations selected for high and low values of a
univariate wing shape index, and found $ 20 sites over the
two largest chromosomes with uniformly small effects.
Zimmerman et al. (2000) found evidence for a dozen QTL
for several aspects of wing shape in each of two small map-
ping populations, each founded by crossing two inbred lines.
Mezey et al. (2005)mapped at least 21 QTL for the first seven
PCs of wing shape in a set of RILs derived from the cross of a
single pair of wild-collected flies. This consistent finding of
many significant effects is reminiscent of the genetic archi-
tecture of human height, where a large number of sites with
individually small effects are responsible for the standing
variation (Lango Allen et al. 2010; Yang et al. 2010; Wood
et al. 2014).

The identity of the genes, as well as the validation studies
with gene knockdowns (the dictionary) and the replication in
independent mapping populations from ME-NC2 popula-
tions, give us confidence that we have identified at least some
of the SNPs causing shape variation in the DGRP population.
We found significant phenotypic similarities between some
SNPs mapping close to a particular gene and the phenotypic
effects of knockdowns of those genes. The GO analysis shows
that our LASSO-significant SNPs tend to map in or close to
genes involved in biological processes known tobe involved in
wing development (Matamoro-Vidal et al. 2015). More

Table 2 Comparison of knockdown (dictionary) effects on genes with LASSO-significant SNPs close to the coding region

Gene
Dictionary

vector length SNP effect SNP Location
Minor allele
frequency LD cluster

Vector
correlation P Median 95%

bru1 0.469 0.509 2L:12286157 Intron 0.04 214 0.358 . 0.283 0.635
Bx 1.200 0.659 X:18441698 Intron 0.03 99 0.292 0.303 0.703
CG12934 1.916 0.038 2R:6539390 +2055 0.04 326 0.338 . 0.191 0.481

0.191 2R:6539191 +1856 0.06 327 0.451 + 0.188 0.505
0.448 2R:6539555 +2220 0.08 327 0.191 . 0.191 0.459

CG8654 0.414 0.551 2R:15872087 39 UTR 0.04 405 0.298 . 0.244 0.561
dally 0.896 0.478 3L:8864892 Intron 0.06 589 0.538 . 0.321 0.699
ds 5.766 0.072 2L:655894 Intron 0.45 114 0.696 + 0.346 0.759

0.159 2L:702560 Intron 0.06 115 0.528 . 0.377 0.750
0.100 2L:702798 Intron 0.09 115 0.263 0.333 0.764
0.224 2L:718623 23640 0.03 116 0.472 . 0.360 0.744
0.110 2L:718627 23644 0.03 116 0.537 . 0.367 0.745

Dys 0.321 0.043 3R:15365550 Intron 0.09 855 0.237 . 0.150 0.410
Egfr 0.939 0.955 2R:17440366 Intron 0.05 445 0.683 * 0.309 0.646
foxo 0.266 0.051 3R:9898374 Intron 0.07 524 0.221 0.244 0.549

0.176 3R:9904321 Intron 0.05 524 0.479 . 0.242 0.538
ft 4.302 0.050 2L:4220302 Intron 0.03 149 0.481 . 0.323 0.713
RhoGEF64c 1.664 0.515 3L:4740113 Intron 0.06 535 0.054 0.181 0.472

0.709 3L:4744803 Intron 0.03 536 0.488 * 0.189 0.478
kay 0.453 0.030 3R:25594742 Intron 0.03 920 0.587 + 0.262 0.601

0.082 3R:25594743 Intron 0.03 920 0.545 . 0.271 0.623
kni 0.359 0.484 3L:20678872 +6558 0.06 727 0.541 * 0.220 0.53

0.076 3L:20679438 +5992 0.03 728 0.195 0.225 0.527
luna 0.369 0.004 2R:6881826 Intron 0.03 332 0.213 0.300 0.686
MRP 0.442 0.451 2L:12747188 +2381 0.06 217 0.546 * 0.191 0.481
tx 0.968 0.140 3R:22260272 26228 0.03 549 0.251 0.332 0.709

Quantiles calculated for vector correlations of dictionary vectors with 10,000 random vectors estimated in the multivariate analysis of variance analysis. LD, linkage
disequilibrium; ., P , 0.5; +, + P , 0.1; *, P , 0.05.
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speculatively, we identified significant similarities between
the effects of SNPs near genes with known roles in the Notch,
wingless, decapentaplegic, and hippo pathways, and the ef-
fects of knockdowns of genes potentially involved in the in-
tegration of signaling of those same pathways.

The regularized effect sizes estimated by the LASSO anal-
ysis were on average quite small, explaining, on average, just
0.1%of the genetic variance inwing shape and size.Neverthe-
less, 17 SNPs were estimated to explain. 1% of the variance.
The LASSO effects were 70% smaller than the corresponding
initial estimates obtained from the MANOVA analyses, sug-
gesting a substantial Beavis effect for the initial analyses.
Simulations of data sets similar to ours (Márquez and Houle
2015) that show the power of our experiments is quite mod-
est for sites that explain just 1% of the variation, perhaps just
20%. Such low power means that our first-round, SNP-by-
SNP analyses would only have detected a minority of all the
variants with an effect on the phenotype.

The LASSO is a useful tool for variable selection, but does
have limitations that are important to bear in mind when
interpreting our results. When the number of predictors, p, is
larger than the d.f. in the data, N, the LASSO algorithm will
return at most N2 1 nonzero effects (Zou and Hastie 2005).

The LASSO can select the causal SNPs from a set of correlated
SNPs (that is, it will be statistically consistent) when p is
large, as long as the SNPs are not too correlated with each
other (Knight and Fu 2000; Zhao and Yu 2006; Bunea et al.
2007; Wainwright 2009; reviewed in section 3 of
Meinshausen and Bühlmann 2010) and the number of pre-
dictors with causal effects is less than the d.f. Unfortunately,
these conditions are not met for the genome as awhole, given
the evidence that the inheritance of wing shape is polygenic.
More specifically, for many of our SNP-by-SNP LASSO anal-
yses, some of the predictor SNPs are in substantial LD (Houle
and Márquez 2015). In such cases, the LASSO will select one
of each set of highly correlated SNPs for inclusion in the
model, but it will not necessarily be the actual causal SNP.

Consequently, we also track the degree of disequilibrium of
each SNP in our models. Table S2 gives summary diagnostics
about this degree of correlation, such as the number and map
distance to perfectly correlated SNPs, the total number of com-
petitor SNPs, and how many of the potentially significant SNPs
are correlated with the focal SNP. In most cases, the 580 SNPs
retained inourfinal LASSOmodelshad relatively small numbers
ofhighly correlated competitorpredictors.This suggests that our
filtered list of 580 SNPs is relatively conservative.

Table 3 LASSO-significant SNPs scored in the ME and NC2 populations

ME-NC2 Pa

Effect size Vector correlation

SNP Nearest gene Distanceb Loc. ME-NC2 LASSO r Pc

X:7053042 CG12541 0 Intron 0.67 0.280 0.257 0.28 ,
X:8105108 Gclc 0 Syn. 0.51 0.214 0.254 0.14
X:9749045 Sp1 0 Intron 0.35 0.656 0.403 0.26 ,
X:19619597 CG14221 0 Syn. 0.12 0.277 0.026 0.03
2L:5147351 Msp300 0 Intron 0.52 0.278 0.137 0.07
2L:11348992 CG14926 25729 Inter. 0.09 0.635 0.003 0.00
2L:12747188 MRP 2381 Inter. 0.61 0.570 0.451 0.36 ,
2L:19219145 Gamma 233 k Inter. 0.07 0.531 0.147 0.02

Tub37
2L:19596734 Lar 0 Intron 0.03 0.438 0.468 0.84 ***
2R:7599329 CG1358 0 Intron 0.11 0.580 0.240 0.54 ,
2R:7844508 Dgk 0 Intron 0.03 0.425 0.210 0.10
2R:10652050 CG12934 2220 Inter. 0.30 0.405 0.449 0.13
2R:12571322 stil 0 Intron 0.55 0.645 0.064 0.03
2R:14822284 Pgm2b 22297 Inter. 0.04 0.274 0.150 0.06
2R:15922844 bdg 196 Inter. 0.35 0.239 0.052 0.08
2R:20505363 Obp57a 0 Syn. 0.06 0.390 0.187 0.29 ,
2R:22511711 px 0 Intron 0.05 0.351 0.173 0.11 ,
3L:3632969 dar1 0 Intron 0.32 0.578 0.314 0.36 ,
3L:4740113 RhoGEF64C 0 Intron 0.35 0.605 0.515 0.49 ***
3L:4962783 Con 0 Intron 0.20 0.576 0.433 0.34 ,
3L:12202436 Adk1 0 Intron 0.15 0.309 0.299 0.54 *
3L:15043133 ind 0 Syn. 0.58 0.252 0.224 0.04
3L:19310451 pip 0 Syn. 0.99 0.696 0.490 0.47 +
3L:20560300 Rcd2 220 k Inter. 0.01 1.232 0.354 0.04
3R:8491058 CG43462 213 k Inter. 0.11 0.517 0.361 0.12
3R:16194246 sra 0 Intron 0.45 0.567 0.339 0.51 *
3R:19539828 Dys 0 Intron 0.08 1.003 0.043 0.05

ME-NC2, Maine-North Carolina 2; Loc., location; LASSO, Least Absolute Shrinkage and Selection Operator; Syn., Coding region SNP with synonymous substitution; Inter.,
Integenic SNP.
a P-value from the ME and NC2 multivariate analysis of variance analysis.
b Distance to transcript in base pairs, k = 1000.
c ,, P , 0.5; +, P , 0.1; *, P , 0.05; and ***, P , 0.001.
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We also carried out a third round of analyses with all of the
LASSO-significant SNPs as predictors, as suggested by
Meinshausen (2007). This further reduces the effect sizes
of SNPs, suggesting that our SNP models are still overfitted.
These models fall afoul of the sample size limitation men-
tioned above, where the number of selected variables must
be less than the number of samples (Zou and Hastie 2005).
We simply do not have enough data to fit a single overarching
model of genetic effects.

Pleiotropy in the Drosophila wing

The Drosophila wing is a single structure, consisting of veins
connected by wing blade tissue. The integration enforced by
the physical connection between each part of the wing and
the continuity of these structures throughout development
makes it a natural subject for a multivariate genetic analysis.
Any change during development that affects one aspect of the
wing, such as the length of a particular vein, must also affect
adjacent areas of the wing. The processes most likely to affect
wing shape and size are the pattern of growth of the wing
tissue, the differentiation of veins from nonvein tissue, and

the rearrangement and planar polarization of cells during
pupariation (Matamoro-Vidal et al. 2015). The known candi-
date genetic pathways that affect these key developmental
events have effects across broad regions of the wing, rather
than being confined to one small area. These considerations
suggest that all effects on wing shape will be pleiotropic.

A second layer of dependency amongmeasurements of the
wing is introduced by the geometric morphometric analysis
that we used (Zelditch et al. 2004). There is no one reference
structure on a complex integrated morphological structure
like a wing that can be used as a standard for comparison
with the locations of other structures. One can only interpret
the relative locations of all measured structures to each other.
Even if we could imagine a developmental change that just
moved the location of a single landmark (Figure 1A) on the
wing in just one dimension, say the location of the distal end
of vein L5 in the X-direction, then geometric morphometrics
would recover an effect vector with not only a large change in
that single X-dimension, but also compensatory changes in
the locations of all other landmarks. With geometric
morphometrics it is not possible to define a set of shape traits
that can be measured independently of all other shape traits.

While it is useful to askwhether there is pleiotropybetween
autonomous morphological structures, such as the wing and
the eye of a fly, or between morphology and other types of
traits, such as life history or behavior, both geometry and
biology lead to a strong expectation of within-structure
pleiotropy.

The MANOVA that we used in this study can be thought of
as consisting of two steps. The first step defines a trait: the
direction in phenotype space that maximizes the distinctness
of the means of the two genotypes. The second step estimates
the statistical significance of a difference of that magnitude
across the whole-phenotype space. In the more typical series
of univariate analyses that are applied to multivariate phe-
notypes, for example analyses of trait scores onPCaxes, only a
finite set of traits are chosen. This finite set cannot sample all
possible types of effects and statistical tests generally ignore
the fact that such tests implicitly are sampled from a larger set
of directions. This is why multivariate analyses can be both
morepowerful thana set of univariate analyses andunivariate
tests may have higher false positive rates, as suggested by the
mismatch between our univariate and multivariate results.

In addition, this aspect of MANOVA corresponds to our
intuition aboutwhat variant genotypes that actually affect the
integrated wing phenotype should do: in principle, every site
affecting wing development could do so in a slightly different
way, and each of those changes will have pleiotropic effects
that extend across thewing. The plots ofwing shape change in
Figure 7, Figure 8, and Figure S5 represent estimates of those
directions of some of our significant SNPs.

A critical justification for transitioning from univariate to
multivariate association studies is to enable the study of the
genotype–phenotype map, i.e., how genomic variation is
translated into phenotypic variation (Houle 2010; Houle
et al. 2010). Every phenotypic effect will have a molecular

Figure 8 Wing-shape deformations inferred for a SNP in the intron of
Lar. Above: effect of SNP 2L:19596734 in the DGRP. Below: effect of SNP
2L:19596734 in the ME-NC2 replication population. Vector correlation
between the vectors of effects from the DGRP and the ME-NC2 was 0.84.
Both effects shown at 33. DGRP, Drosophila Genome Reference Panel;
ME-NC, Maine-North Carolina.
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origin, for example in gene expression, which then ramifies
outward to cells, tissues, and finally to the outward aspects of
organismal form and function, such as morphology and be-
havior. Each such molecular change may have effects on
many whole-organism phenotypes. For example, the study
of even the simplest monogenic human genetic diseases, such
as sickle cell anemia, often reveals a host of disorders tracing
back to the single genetic cause. Decisions about how to treat
genetic disease, the value of a genetic variant in plant or
animal breeding, or whether an endangered population is
likely to adapt to a changing environment will be improved
when we have information about all of the pleiotropic effects
of genetic variation, and not just the few that happen to have
been studied.

Dimensionality as a blessing rather than a curse

With all the advantages of multivariate association analyses
detailedabove,whyare they still rare? In somecases, thereare
substantial statistical barriers to a fully multivariate analysis.
For example, it is challenging to combinebinomial andnormal
variates in the same analysis, although solutions have been
proposed (e.g., O’Reilly et al. 2012). Many multivariate data
sets have incomplete phenotypic data, and restricting the
analysis to just those individuals with complete data may
reduce sample size too much for reasonable inference. Mul-
tivariate methods are unfamiliar to many researchers, posing
a relatively simple hurdle to their adoption.

A final factor interfering with the widespread adoption of
multivariate methods is the “curse of dimensionality.” This
phrase was originally coined by Bellman (1957) and has
since become a meme useful for causing unease about mul-
tivariate analyses, even when the nature of the curse remains
implicit. It generally denotes the notion that the hypervolume
of sample space increases rapidly with the number of dimen-
sions measured, while the sample size remains fixed, result-
ing in data that is ever sparser as dimensionality increases
(Hastie et al. 2009). Zimek et al. (2012) identified eight sep-
arate challenges that increase with dimensionality of the data
just in the realm of distance-based analyses (such as detect-
ing neighbors, hubs, outliers, etc.). They also noted that many
of these are problematic only in the limiting case where all
variables are independently and identically distributed. How-
ever, real biological data are always correlated and often
clustered. In particular, we know that genetic effects must
cause the clustering of individuals with similar genotypes
in phenotype space. Our argument that the relationship
between vectors of effects is more informative in a high-
dimensional data space is essentially the other side of the
standard sparsity argument. Effects become more informa-
tive because a finite set of real effects must be sparser in a
larger space, and therefore both similarities and differences
become more informative.

Another challenge frequently posited is that a large pro-
portion of the measurements in a high-dimensional data set
may be irrelevant. Indeed, our simulations show that the
power of an association study declines when traits without

any genetic basis are measured (Márquez and Houle 2015).
We are confident that the number of traits can usually be
increased without reaching this limit. With the exception of
eQTL studies, the current standard approach to GWAS in-
cludes just a few traits. Until other forms of high-throughput
and automated phenotyping become available, biological
measurements will usually be expensive and time-consuming
to make, ensuring that considerable thought is often
expended on what to measure. Furthermore, the appropriate
dimension for analysis can be estimated from data on re-
lated individuals (Kirkpatrick and Meyer 2004; Meyer and
Kirkpatrick 2005, 2008). In general, PC analysis can reveal
howmuch new information is addedwhen another trait is mea-
sured and a cutoff that seems likely to capture most genetic
variation chosen.

Thebest answer to theconcern thatdimensionality canbea
curse are the many independent simulation studies that
consistently show that the power of multivariate analyses is
higher than univariate analyses. Most of these studies also
analyze real data sets and invariably findmore associations in
multivariate than univariate analyses (O’Reilly et al. 2012;
Stephens 2013; Scutari et al. 2014; Zhou and Stephens 2014;
Porter and O’Reilly 2017). These simulations make different
assumptions, and apply a wide variety of well-established or
experimental multivariate analyses.

We believe that researchers should invoke the blessings of
dimensionality rather than its potential to be a curse. Multi-
variate analyses will generally be more powerful. The ability
to estimate the direction of effects becomes more salient with
the dimension of the space studied. The phenomenon of
pleiotropy simply cannot be studied unless multiple traits
are studied together. Those interested in the inheritance of
complex traits and the genotype–phenotype map should
adopt multivariate approaches whenever it is feasible to do
so.
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