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Abstract

Sociability, defined as individuals’ tendencies to affiliate with conspecifics, is widespread among animals, including species not traditionally
categorized as social. A few studies have documented a positive association between sociability and fitness, and sociability has positive effects
on health, well-being, and longevity in humans. Despite the importance of sociability, we still have limited information about its genetic basis.
To address this knowledge gap, we compared gene expression in the heads of fruit flies (Drosophila melanogasten from lineages artificially
selected for, and divergent in, degree of sociability. We identified 174 genes that showed differential expression among low and high-sociability
lineages, of which 33 genes have known effects on neuroanatomy, neurophysiology, or behavior. Experiments using knockdowns of 16 of the
top candidate sociability genes revealed 6 of them significantly affecting sociability in the predicted direction. Relying on our large genomic

database, we and others can further elucidate the genetic architecture and evolutionary biology of sociability.
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Introduction

Sociability, defined as individuals’ tendencies to affiliate
with conspecifics, is prevalent among animal species. So-
ciability means that individuals seek each other while en-
gaged in activities, including feeding, traveling, resting, and
sleeping (Allee, 1938; Clutton-Brock, 2016; Scott et al.,
2022a; Tinbergen, 1953; Ward & Webster, 2016; Wilson,
1975). While we often associate sociability with group-living
species such as many mammals, flocking birds, schooling
fish, and social insects, many more species, including a large
variety of insects traditionally classified as non-social, are
sociable (Costa, 2006; Prokopy & Roitberg, 2001). For ex-
ample, although fruit flies (Drosophila melanogaster) had
been historically perceived as solitary animals, they form so-
cial groups in both laboratory (Bentzur et al., 2021; Billeter
et al., 2024; Chen & Sokolowski, 2022; Durisko & Dukas,
2013; Saltz, 2011; Schneider et al., 2012) and field settings
(Dukas, 2020), and show heritable variation in sociability
(Scott et al., 2018, 2022a). Overall, fruit flies possess a va-
riety of social behaviors, including social synchronization
of the circadian clock (Levine et al., 2002), social learning
(Battesti et al., 2012; Sarin & Dukas, 2009), and collective
response to danger (Ferreira & Moita, 2020; Ramdya et al.,
2015).

Several studies have documented positive associations be-
tween sociability and fitness (Bond et al., 2021; Dal Pesco et
al., 2022; Gerber et al., 2022; Kajokaite et al., 2022; Snyder-
Mackler et al., 2020). Most notably, long-term studies have
revealed positive correlations between measures of social in-

tegration and components of fitness in baboons (Papio spp.).
Female baboons that have stronger social bonds with other
females live longer (Silk et al., 2010), have higher infant
survival (Silk et al., 2003), and their adult offspring have
longer lifespan (Silk et al., 2009). Male baboons that are
more strongly bonded to females also have longer lifespans
(Campos et al., 2020). In humans, the number and quality
of social contacts are positively correlated with a variety of
health measures as well as with longevity (Elovainio et al.,
2017; Holt-Lunstad et al., 2015; House et al., 1988; Steptoe
et al., 2013; Yang et al., 2016), but this positive correlation
may not indicate causation (Liang et al., 2024).

Despite the clear importance of sociability for many ani-
mals, including humans, we still have limited knowledge of
its genetic architecture. Within the broader area of social be-
havior, defined as interactions among conspecifics, perhaps
the most relevant bodies of literature include genomic stud-
ies of social hymenopterans (Kocher et al., 2018; Shpigler et
al., 2017; Smith et al., 2008; Toth & Rehan, 2017), genetic
studies of animal models, primarily mice, employed for in-
vestigating the mechanistic basics of social deficiencies such
as autism spectrum disorder in humans (de la Torre-Ubieta et
al.,2016; Moy & Nadler, 2008; Silverman et al., 2010), and
genome-wide association studies focusing on socializing and
loneliness in humans (Bralten et al., 2021; Clyde, 2018; Day
et al., 2018). It has been suggested that there are highly con-
served mechanisms for social behaviors, which are shared by
a wide range of animals from insects to mammals, including
humans. Evidence in support of this proposition, however,
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is currently limited (Rittschof et al., 2014; Robinson et al.,
2005; Shpigler et al., 2017).

To further advance our knowledge of the genetic archi-
tecture of sociability, we artificially selected replicated lin-
eages of fruit flies that depict either low or high sociabil-
ity (Scott et al., 2022a). Our measure of sociability was the
strength of flies’ tendency to join others when presented with
eight food patches of identical quality. Flies could fall any-
where between showing a strong tendency to feed and rest
together on a single patch, indicating high sociability, to ran-
dom assortment among the eight food patches, reflecting no
significant sociability. We then utilized genomics approaches
to identify genes that may mediate variation in sociability.
First, we compared gene expression in the heads of adult
flies from the divergent lineages using RNAseq. Our major
goal was to identify the set of genes that showed differential
expression between the low- and high-sociability lineages.
Then we examined sociability by sex interactions and dif-
ferential gene transcript usage. Once we identified candidate
sociability genes, we asked what biological processes they
are involved in, whether they were disproportionately ex-
pressed in head tissue, and whether they were homologous
to genes linked to social behavior in other species. Finally, we
conducted experiments to verify the effects of top candidate
genes on sociability.

Materials and methods

Artificial selection

We previously applied artificial selection on sociability (Scott
et al., 2022a). For each selection treatment, we had four in-
dependently evolving lineages (four low-sociability lineages,
four high-sociability lineages, and four control lineages). For
each generation, we quantified sociability in 12 groups of
16 females and 12 groups of 16 males from each of the 4
low- and 4 high-sociability lineages. The 16 flies of each
single-sex group were held together from sexing within 8
hr post eclosion until testing, when they were 4 days old.
To quantify sociability, we placed each group of 16 flies in-
side a sociability arena, which had eight equal-sized com-
partments, each containing a food disc (Figure 1 in Scott et
al., 2022a). Flies could move freely among compartments
and either form one or a few groups, or disperse among
all eight food patches to feed and rest. After 90 min, we
blocked the passage, and recorded the number of flies in
each compartment. From this record, we calculated the so-
ciability score as the variance scaled by the mean number of
flies in each compartment. With this widely used ecological
measure of dispersion (Krebs, 1999), a value of 0 indicates
social avoidance, 1 means random distribution, and values
significantly above 1 denote significant sociability (Durisko
et al., 2014; Scott et al., 2018). We then selected four flies
from each arena (96 individuals total per lineage). For the
low-sociability lineages, we selected flies from compartments
with the lowest numbers of individuals, while for the high-
sociability lineages, we selected flies from compartment(s)
with the highest number of individuals. For the 4 control
lineages, we randomly selected 4 flies from each of the 12
groups of 16 same-sex flies per lineage. Owing to time con-
straints, we quantified sociability in the control lineages only
every five generations. We used the extreme 48 males and 48
females from each lineage for breeding to generate the next
generation of individuals. After 25 generations of selection,
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the high-sociability lineages showed sociability scores about
50% greater compared with low-sociability lineages. (Scott
et al., 2022a; Figure 1).

In generation 26, we collected adult fly heads for gene ex-
pression analysis. We used identical methods as in previous
generations except that we had two experience treatments.
In the sociability arena treatment, we placed groups of 16
same-sex flies in the sociability arenas prior to their collec-
tion for gene expression. This provided the flies with the so-
cial dynamics experienced during their evolutionary history
under artificial selection. When placed in the sociability are-
nas, flies initially engage in exploration and frequent con-
tact with other flies (Scott et al., 2022a). We presumed that
such social interactions would affect the expression of per-
tinent genes. In the vial treatment, we just moved groups of
16 same-sex flies into fresh vials, so these flies did not expe-
rience the sociability arenas. After 20 min, we rapidly trans-
ferred each group of 16 individuals into a 1.5 ml tube and
submerged it in liquid nitrogen. We had 3 replicates per lin-
eage x 12 lineages x 2 sexes x 2 experience conditions for a
total of 144 samples. We later separated the flies” heads and
extracted RNA.

RNA extraction and sequencing

Adult head tissue was homogenized in 1.5 ml tubes using
a NextAdvance Bullet Blender (NextAdvance) using metal
beads. We extracted RNA with the MagMAX-96 Microar-
rays Total RNA Isolation Kit (Thermo Fisher). We checked
RNA purity with a Nanodrop spectrophotometer and quan-
tified the amount of RNA using a Denovix Fluorometer
(Denovix) with the Qubit RNA high-sensitivity assay kit
(Thermo Fisher). We sent samples to Génome Québec (Cen-
tre d’expertise et de services, Génome Québec) for library
preparation and sequencing. Library preparation used NEB-
Next dual multiplex oligos. Sequencing was done on an Il-
lumina NovaSeq 6000 S4, generating 100 bp paired-end
sequences. One sample was rejected in the quality control
check for poor quality, and another sample was rejected for
low quantity of RNA, so 142 samples were sequenced. A to-
tal of approximately 6.2 billion read clusters were generated
with an average of 44 million read clusters per sample (total
reads per sample in Supplementary File 1).

Read processing and mapping

All computational analysis was performed using the Graham
cluster from the Digital Research Alliance of Canada (for-
merly Compute Canada; www.alliancecan.ca). We checked
the sequencing quality of reads using FASTQC (v0.11.9,
Andrews, 2010) and MultiQC (v1.12, Ewels et al., 2016),
which assessed adapter content, per sequence quality scores,
and GC (guanine-cytosine) content. All samples had a mean
Phred score value of > 35. We assessed transcript integrity
number (TIN) using RSeQC (v4.0.0, Wang et al., 2012),
and all but two samples had median TIN scores >60, with
those two having a median TIN score of 49 and 59. Using
clustering and PCA, we evaluated whether these two sam-
ples appeared as outliers, and neither were. As such, we in-
cluded all samples in the analysis. We trimmed adapters us-
ing trimmomatic (v0.36, Bolger et al., 2014), with both lead-
ing and trailing set to “3” and run parameters set to “MAX-
INFO:20:0.2.” We removed reads shorter than 36 bp from
the sample. Following trimming, we again used FASTQC
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Figure 1. Mean + SEM sociability scores over 25 generations in females (A) and males (B) of the low (blue), high (red), and control (black, unfilled)
lineages (n = four lineages for each of the three treatments). Note that we quantified sociability in the control lineages only every five generations.
Values significantly above 1 (dashed lines) indicate significant sociability. Data from (Scott et al. 2022a)).

and MultiQC to confirm adapters were trimmed while main-
taining high-quality sequence. We mapped reads to a refer-
ence transcriptome of D. melanogaster from FlyBase (ver-
sion r6.38, Gramates et al., 2022) using Salmon (v1.4.0,
Patro et al., 2017) with decoys, which produced counts of
transcripts per sample. To use Salmon, we first generated
an index file from a list of decoys, a reference transcrip-
tome, and a reference genome (version r6.38, Gramates et
al., 2022), which we then used for mapping. We also sepa-
rately used the splice-aware aligner STAR (v2.7.9a, Dobin
et al.,2013) to map reads to a reference genome, which pro-
duced gene-level counts (Figure S1, Table S1). Counts were
imported into R (v4.2.0, R Core Team, 2022) using tximport
(v1.24.0, Soneson et al., 2016).

Principal component analysis

Count data were normalized using the “vst()” function from
DESeq2 (v1.36.0, Love et al., 2014), which performs a vari-
ance stabilizing transformation. In the “vst()” call, we set
“blind = FALSE,” providing a design matrix consisting of
sex, experience, selection, and the interaction between selec-
tion and sex. We also used “nsub = 5000 to filter for only
the top 5,000 most variable genes. To visualize the princi-
pal component analysis (PCA) results, we used the function
“plot_pca()” from RNAseqQC (v0.1.4, DeLuca et al.,2012)

with “nfeats = 500 to plot the top 500 most variable genes.
The robustness of the qualitative findings from the PCA were
confirmed by trying different numbers of genes to include
(from 500 to 10,000).

Differential gene expression analysis

To filter out low-expressed genes, we used the “filterBy-
Expr()” function from edgeR (v3.38.4, Robinson et al.,
2010). We filtered genes that had lower than 0.3 counts
per million (CPM) in at least eight samples. We used CPM
instead of raw counts for filtering step to avoid over-
representation of genes expressed in larger libraries (Chen
et al. 2016). From 13,701 genes, we removed 2,176 genes,
leaving 11,525 genes for gene-wise analysis. For gene-level
modeling, we utilized two distributional approaches, extend-
ing common approaches widely used for gene expression
analysis. To model variation from counts directly, we used a
negative-binomial generalized linear mixed model, while for
Gaussian mixed models, counts were normalized and vari-
ance stabilized in the form of log, (CPM) using the “voom()”
function in the limma package (v3.52.4, Ritchie et al., 2015).
Details for each are given below. As we needed to incorpo-
rate random effects into our generalized linear models, we
used glmmTMB (v 1.1.4, Brooks et al., 2017). Given that
most studies of differential gene expression (DGE) use mod-
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eling tools like limma-voom, EdgeR, and DESeq2, we con-
firmed that model estimates for fixed effects were similar
when compared to estimates from the models lacking ran-
dom effects fit in limma-voom, as discussed below.

The full model used lane, sex, experience (sociability arena
or vial), and selection as main, fixed-effect terms. We in-
cluded all second-order interactions between selection, sex,
and experience. Lineage was modeled as a random effect
nested within selection treatments. Variation for sex and
experience was allowed to vary by lineage (i.e., random
“slopes” for sex, by lineage). For each gene evaluated, the
full model in glmmTMB syntax is

log,cpm ~ lane + sex + expMatched + selection
+ sex : expMatched + selection : expMatched
+selection : sex + diag(0 + sex
+expMatched | selection : lineage).
In standard notation:
yi ~ N(u = Bogjiiy + Brxa + Bagjixan + Bsiji¥sii
+ Baxapi) + Bsxaiaxs + BeXaiiX3ii + Brxaixa, 0y )-

With variances across lineages (for j = 1, ..., 12) within
selection treatment:

2
Botji gy Ty 02 0
By | ~ MVN | ug,, 0 oz, 01,
B3y ug, 0 0 of

where y; = log, (CPM) (or counts for negative binomial, dis-
cussed below) for the ith sample (for i = 1, ...,142), x; =
lane, x; = sex, x3 = expMatched, and x4 = artificial selec-
tion treatment.

Similarly to limma-voom, for each gene, we modeled log,
of CPM (computed from tximport), as our response, with
residual variation assumed to be distributed normally. If a
model failed to converge for a given gene, we adjusted the
model to fit a slightly less complex random effect while keep-
ing all other terms identical. The adjustment to the random
effect was to drop experience, such that the random effect
was now diag(0 + sex | selection : lineage). Importantly, ex-
amination of model fits where covariance between the sexes
across lineages was set to 0, had minimal impacts on model
estimates (and associated uncertainties) for coefficients of in-
terest (selection treatment and sex) for this study. For our
specific contrasts and downstream analyses, we utilized esti-
mated marginal means (emmeans) and associated contrasts
from model fits using the emmeans package (v1.8.1, Lenth,
2022).

For direct use of gene expression count data, for each
gene, we fit models in glmmTMB, using gene expression
counts (from tximport) as the response, utilizing a natural
log link and a negative binomial distribution. We obtained
and extracted normalization factors from DESeq2 using
“estimateSizeFactors()” and “normalizationFactors().” Nor-
malization factors were included as offsets (log transformed)
in the models. To account for over-dispersion, we used the
quadratic parameterization for the variance, “family = nbi-
nom2(),” specifying the variance as V = u(1 + “/(p), with
predicted mean (i), and dispersion parameter (¢). Given the
large sample size of our experiment, the dispersion param-
eter was estimated uniquely for each gene. In contrast, in
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the default approach in DESeq2, information is shared (and
dispersion estimates for individual genes most often shrunk
toward) values for genes that share similar mean expression
levels. The method used in DESeq2 is appropriate for anal-
ysis of datasets with limited sample sizes, albeit with strong
assumptions. In particular, genes with similar expression lev-
els have similar variances. As our sample sizes were rela-
tively large, these could be estimated well for each gene in
our models, and it was not necessary to make these assump-
tions. For both approaches, the mixed model fits in compar-
ison to either limma-voom or DESeq2 had very similar fixed
effect estimates, but with more appropriate measures of un-
certainty (Figure S2, Table S2, supplementary results).

Filtering results, custom contrasts, and gene
curation

We used a multi-stage approach to help identify genes where
differential expression across selective treatments was rele-
vant. In our first stage, we used the “Anova()” function from
the R package car (Fox & Weisberg, 2019) to perform a
Wald test on fitted models (per gene). For each gene, we ex-
tracted p-values for relevant model terms (relating to differ-
ences across sociability treatments). We adjusted p-values,
using the R function “p.adjust()” with “method = “BY”
(Benjamini & Yekutieli, 2001) for controlling false discovery
rate. After adjustment, we filtered out genes with false dis-
covery rate (FDR) < 0.05, using custom contrasts, via em-
means, to include genes whose expression differences across
sociability treatments fit this criterion. This way, we only
examined custom contrasts from genes passing initial filter-
ing. For the next stage, we split contrast lists into three lists,
which corresponded to our three contrasts: low versus high,
low versus control, and control versus high. In each of these
three lists, we pulled out genes with a p-value < .05 to ob-
tain a list of genes in each of the three contrasts that poten-
tially mediate sociability. We investigated each of these genes
using the Drosophila database, FlyBase (vFB2023_01), fo-
cusing on whether previous work indicated expression in
head tissue, links to social behavior, and orthologous human
genes. We then focused on the gene list from the contrast
between low versus high selection treatments and investi-
gated each of the genes using the Drosophila database, Fly-
Base (vFB2023_01). We looked for evidence of expression
in the adult head and relevant phenotypes, including neu-
roanatomy, neurophysiology, locomotor behavior, or circa-
dian rhythm.

Differential transcript usage analysis

We also examined how differential transcript usage (DTU;
sometimes called isoform switching) evolved amongst the
evolutionary treatments. DTU evaluates the relative contri-
bution of different transcripts within a gene to its overall
abundance, and broadly speaking, can be thought of expres-
sion ratios of different transcripts. We followed recommen-
dations for DTU analysis as outlined in Love et al. (2018).
We generated transcript-level counts from Salmon and im-
ported them into R (tximport). We normalized counts to
scale to library size during import. We filtered transcripts
using the “dmFilter()” function from DRIMseq (v1.24.0,
Nowicka & Robinson, 2016). For a gene to be retained
through filtering, the gene had to be expressed in a minimum
of 28 samples (out of 142 total), with a minimum expres-
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sion of 10 counts per sample, in those samples. For a given
transcript to be retained, it had to be expressed in a mini-
mum of 20 samples, with the transcript representing at least
5% of the gene’s total expression in those samples. This re-
moves rare transcripts (within sample) or genes with limited
expression (across samples). A priori, we would not expect
to be able to estimate coefficients for these transcripts with
sufficient precision for meaningful comparisons. Prior to fil-
tering, there were 6,559 genes with at least two transcripts
representing a total of 21,143 transcripts from our samples.
Post filtering, we had 4,761 genes representing 12,335 tran-
scripts (Supplementary File 2).

For model fitting, we used an approach analogous to that
used in DEXseq (Anders et al., 2012). However, as we did
for total gene expression, we modified this approach to al-
low for the inclusion of random effects in the model in the
framework of a generalized linear mixed model. This ap-
proach focuses on examining transcript-treatment interac-
tions to assess DTUs (Love et al., 2018). For computational
efficiency, DEXseq (v1.5.3) implemented a change (relative
to earlier versions of the software) in how the design matrix
is coded (based on changelogs, we think the library authors
made this change in 2013), and thus how contrasts between
transcripts are estimated (Reyes et al., 2013). The authors
of DEXseq implemented this change to deal with high com-
putational overhead, for situations where number of exons
(or transcripts) per gene was very high (Anders et al., 2012).
However, for our data and modeling strategy, this was not
a constraint. As such, we retained treatment contrast coding
for our design matrix during estimation, and, as discussed
below, used emmeans to extract estimates and contrasts.

We used glmmTMB to fit a model that predicted counts
for each individual transcript of a gene as described below.
For a few genes, we observed complete separation (a tran-
script was completely absent in one treatment but varying
in others). To account for this, we added a count of one to
all transcripts for each sample. Thus, changes in transcript
usage will be slightly underestimated. Of note is the inclu-
sion of a random effect per sample to account for variation
in transcript abundances within each biological sample. We
fit both full and “null” models using the negative binomial
distribution with glmmTMB. The full model was

counts ~ 1 + transcript + transcript : sex + transcript
: selection + transcript : sex : selection

+ diag(sex + transcript |selection : lineage)

+ (1 | sample_id).
The null model was

counts ~ 1 4 transcript + transcript : sex
+diag(sex|selection : lineage) + (1 | sample_id).
For genes where the full model failed to converge, we re-fit
with the following model:
counts ~ 1+ transcript + transcript : sex
+ transcript : selection + transcript

: sex : selection + (1 | sample_id).

1981

With the corresponding null model:

counts ~ 1 + transcript + transcript : sex

+(1 | sample_id).

We confirmed model comparisons by using the “Anova()”
function from the car package to perform a type I ANOVA.
Concurrently, we obtained emmeans contrasts for low ver-
sus high sociability. We adjusted p-values using the “BY”
method, filtering results to include genes with adjusted p-
value < .05 for the transcript: selection interaction term (or
transcript: sex for our checks for sex-specific DTUs). From
here, we subsetted our emmeans list to only include genes
that passed the cut-off for the ANOVA, and used custom
contrasts to identify changes in transcript usage within genes
across selective treatments, sex, and their interactions.

Gene ontology analysis

We performed gene ontology (GO) analysis using topGO
(v2.48.0, Alexa & Rahnenfuhrer, 2022) on the subset of
genes identified using our analysis pipelines as described
above. We separately performed GO analysis on the sub-
sets of filtered genes from DGE and DTU analyses. We set
the minimum number of genes per GO term to 5 and used
Fisher’s exact test. We adjusted resulting p-values for multi-
ple comparisons in the exact same way we did in gene cura-
tion.

Comparison to other social behavior studies

We compared differentially expressed (DE) genes from our
study with those reported in four of the most relevant pub-
lished studies that assessed the genetic basis of social behav-
ior. For each of the four comparisons, we ran simulations
to predict the chance occurrence of overlapping genes. First,
Bralten et al. (2021) performed a genome-wide association
study (GWAS) with 342,461 people from the UK Biobank,
and identified 56 genes associated with sociability. We took
their list of 56 genes and identified orthologous genes in
Drosophila. We also took the orthologs of the 18 indepen-
dent loci and identified the corresponding 8 orthologs (as
some were single-nucleotide polymorphism (SNP) locations
with no corresponding Drosophila orthologs).

Second, Wang et al. (2022) examined early life social ex-
perience in the bumblebee, Bombus impatiens. They per-
formed RNA sequencing to look for genes DE between three
separate early life conditions: colony-housed, group-housed
(with others but outside of the colony), and isolation (Wang
et al., 2022). They ended up with a list of 94 DE genes be-
tween isolated and colony-reared bees and 27 DE genes be-
tween isolated and group-housed bees, with 6 genes overlap-
ping between the two contrasts (Wang et al., 2022).

Third, Woodard et al. (2011) examined the convergent
evolution of eusociality across bee species. They looked
across nine socially diverse bee species, which included eu-
social and non-eusocial bees, and identified 212 genes that
evolved more rapidly in eusocial lineages compared to non-
eusocial lineages (Woodard et al., 2011).

Finally, Shpigler et al. (2017) performed DGE analysis on
RNA obtained from the mushroom body of the brain of bees
that only responded to a territorial threat, bees that only
showed nursing behavior toward a queen larva, and bees
that responded to neither. They identified 1,057 DE genes
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between all three groups of social responsiveness (Shpigler
et al., 2017).

To evaluate whether there was more overlap between
genes associated with sociability that we identified in
Drosophila and those in either Bombus/Apis or humans
(Bralten et al., 2021; Shpigler et al., 2017; Wang et al., 2022;
Woodard et al., 2011), we computed the total number of or-
thologous genes that could be compared across species (i.e.,
orthologs in Drosophila that could be unambiguously iden-
tified) used in each study. From this, we generated a random
set of genes with the number of significant hits being the
same observed in each study. From this, we identified the
number of overlapping genes in this random set. We evalu-
ated our observed number of overlapping genes, relative to
the expectation based on overlaps for random sets of genes
(based on 10,000 simulations for each study).

Candidate gene validation

We chose 20 candidate genes that had among the highest
differential expression between the low- and high-sociability
lineages, subject to the availability of RNAI strains that are
part of either the Transgenic RNAi Project (TRiP) or Vienna
Drosophila Resource Center (VDRC) collections (Dietzl et
al.,2007; Zirin et al., 2020). Additionally, we used the TRiP-
control strains that are co-isogenic with the TRiP RNAi
knockdown strains for control crosses. Detailed genotypic
information for each strain is in Table S3. We crossed males
from each RNAIi strain with females from a general ner-
vous system Gal4 strain, to specifically knockdown gene ex-
pression of each chosen candidate gene. Our default Gal4
line was elav-Gal4, UAS-Dicer2 (BDSC 25750). We used a
weaker elav-Gal4 (BDSC 8765) with the thoc5-RNAI strain
owing to high offspring mortality with the default Gal4
strain. We verified expression of elav-Gal4 in both Gal4
strains by crossing them to a UAS-GFP strain, which al-
lowed us to visualize and confirm pattern of Gal4 expression
in the Drosophila brain. Each experimental block had an
equal number of assays for the control genotypes, in which
we crossed males from the co-isogenic TRiP-control strains
(BDSC stock 36303 or 36304 depending on the location of
the transgene insertion) to elav-Gal4 females. While all gene
knockdown experiments conducted with the TRiP strains
had co-isogenic controls, we did not do this with the VDRC
control strains as those are in a white™ background, and the
single copy of the “mini”-white™ rescue in the elav-Gal4 in-
sertion only partially rescued eye pigmentation in females as
a heterozygote (close to wild-type in hemizygous males). As
loss of function of white is associated with numerous behav-
ioral defects, we wanted to avoid this situation. As such, we
used the same genotypes to set up our controls as we did for
the TRiP strains. On average, we did not observe substantial
or consistent differences in sociability between the TRiP and
VDRC collection of lines, but we cannot rule knockdown-
specific genetic background effects for the latter (Chandler
et al., 2013) contributing to our effects.

We maintained all strains at 25 °C and 60% RH on fly
medium in which each 1 L contained 90 g sucrose, 75 g
cornmeal, 10 g agar, 32 g yeast, 2 g methyl paraben dis-
solved in 20 ml ethanol, and water. We failed to produce
normal offspring owing to either high mortality or unex-
panded wings with three strains (BDSC# 50556, VDRC#
101616, and VDRC# 100094), while one RNAI strain was
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incorrectly identified and removed from further considera-
tion. Hence, we ended up testing 16 candidate genes (Table
s3).

We quantified sociability using a protocol modified from
Scott et al. (2022a). We sexed groups of eight newly eclosed,
unmated offspring from the knockdown group and con-
trol group and placed each group into same-sex and same-
treatment food vials with 5 ml of standard food. We sexed
12 sets of focal flies per sex, treatment, and day, for a total
of 384 flies per day, and quantified sociability once individ-
uals were 3 days old. We used 3D-printed circular arenas
50 mm wide and 6 mm high divided into eight compart-
ments by thin walls with openings 6 mm wide and 3.5 mm
high (Figure S3). Flies readily traveled among the eight sec-
tions. The top of the arena consisted of a plexiglass sheet
with a 3D-printed circular edge and a 3 mm hole. We placed
a 7.5 mm wide and 2 mm high circular patch made of reg-
ular medium in each compartment, and covered it with 50
ul of juice solution made of 2 g live yeast dissolved in 10 ml
orange juice. Every morning (8 a.m.), we placed fresh food
patches in each arena, attached the covers, and gently aspi-
rated groups of eight same-sex flies into each arena through
the hole in the top. We then covered the hole with a small
piece of transparent, sticky tape. We prepared 12 arenas per
sex, per treatment, and 48 arenas in total per day, and placed
the arenas inside a humidified container maintained at 25 °C
and 50% RH.

We allowed flies to settle until 2 p.m. Then, an observer
blind to treatment counted the number of flies in each com-
partment within each arena every 15 min for 1 hr. We calcu-
lated the five sociability scores for each arena as the variance
over the average number of flies in each arena (Durisko et
al., 2014; Scott et al., 2018). The minimum sociability score
of 0 represents one individual within each of the eight sec-
tions of the arena, and the maximum sociability score of 8
is attained if all eight flies from a single group in one sec-
tion of the arena. With this sociability measure, scores signif-
icantly greater than 1 indicate more social aggregation than
expected at random. At the end of scoring arenas, we dis-
carded flies, washed the arenas with detergent and water, and
let them dry overnight. We conducted 3 test days for each
candidate gene for a total of 144 arenas per experimental
block (16 experimental blocks total).

The data used as our response variable from the sociabil-
ity scores for each arena are semi-continuous, positively val-
ued, with rare Os. As such, we analyzed the sociability data
for each gene by fitting a generalized linear mixed effects
model with the glmmTMB package (v1.1.8, Brooks et al.,
2017) using a Tweedie distribution with a log link function
in R v4.3.3 (R-Core-Team, 2023). In this implementation,
the Tweedie power parameter is constrained to lie between
1 (pure Poisson) and 2 (pure Gamma). We modeled treat-
ment, sex, and their interaction as fixed effect, and included
time from onset of scoring as a continuous predictor. We fit
a random effect, allowing the intercept to vary for day of ex-
periment, an independent random effect, allowing intercept,
and slope for time within experiment to vary according to
individual arena (unit of sampling). We also included a final
random effect for experimental block. For the model fit, we
had a singular convergence warning. As such, we confirmed
the stability of fixed effect estimates with a model where we
removed the random slope associated with time for the ran-
dom effect of individual arenas, but otherwise identical to
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Figure 2. Principal component analysis (PCA) plots showing the variance associated with samples. Points on each plot are colored by sex, with females
in red and males in blue. Different-shaped points represent different selection treatments. (A) PC1 (36.5% of variance) on the x-axis and PC2 (25.2% of
variance) on the y-axis. (B) PC2 on the x-axis and PC3 (5.9% of variance) on the y-axis. (C) PC3 on the x-axis and PC4 (3.5% of variance) on the y-axis. (D)

PC4 on the x-axis and PC5 (3% of variance) on the y-axis.

the model described above. Both models produced virtually
identical estimates and confidence intervals for fixed effects,
which are the focus of this study. We used emmeans and con-
trast functions from the emmeans package (v1.10.0, Lenth,
2022) to estimate custom contrasts of treatment effects, av-
eraged over sex, as well as the interaction contrasts for treat-
ment and sex effects (to assess sex-specific effects of RNAi-
mediated gene knockdowns). These were adjusted for multi-
ple comparisons using the DunnettX approach in emmeans,
adjusting for 16 comparisons.

Results

Broad-scale co-variation in gene expression
suggests changes associated with artificial
selection for sociability

To examine broad-scale, qualitative patterns of variation in
gene expression, we used PCA on the samples (Figure 2).
Sexually dimorphic gene expression accounts for much of
the (co)variation that loads on the second principal compo-
nent, accounting for ~25% of the variation in gene expres-
sion, consistent with large-scale sex-biased gene expression

in the adult head (Arbeitman et al., 2016; Khodursky et al.,
2020; Nanni et al., 2023). Interestingly, PC1 (accounting for
~36% of the variation) shows that the lineages artificially
selected for low sociability (“down”) tend to have positively
valued scores on PC1, while the samples from the control
and “up” lineages are variable along PC1. This variation for
high and control treatments in gene expression is a result
of lineage-specific effects, i.e., replicate lineages within each
selection treatment (Figure S4).

DGE analysis indicates that the expression of
hundreds of genes may mediate natural variation
in sociability

Following DGE analysis, we had results between all four
possible combinations of using Salmon or STAR for map-
ping, and either a Gaussian (logy CPM) or negative bino-
mial distribution (counts with offsets). Results presented
will be in reference to the Salmon-mapped counts fit with
the Gaussian distribution (Figure SS5). Contrasts and gene
lists from the comparable analysis (STAR mapped, fit with
a negative binomial with a log link) are provided in the
repository (https://doi.org/10.6084/m9.figshare.29657138.
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Figure 3. Mean-average (MA) plot for a given selection contrast. X-axis is the mean average in log, (CPM) for each gene obtained from emmeans. Y-axis
is the mean difference between low and high sociability expression in log;(CPM), also obtained from emmeans. Red points are differentially expressed
genes that have a p-value < .05 when looking at the given contrast, and blue points are genes that have a p-value > .05. (A) Low versus control
sociability contrast. (B) Low versus high sociability contrast. (C) Control versus high sociability contrast.

v1). As a check, we first extracted DE genes between fe-
males and males. Previous studies have shown that within
D. melanogaster, there is a large number of genes that show
sex-biased gene expression differences (Parisi et al., 2004;
Ranz et al., 2003), and relevant to our study, within the head
(Arbeitman et al.,2016; Khodursky et al.,2020; Nanni et al.,
2023). We found 5,331 genes that are DE between females
and males (Figure S6) based on our filtering criteria.

Within the contrasts among the three artificially selected
treatments, we examined the distribution of effects, and ob-
served that a majority of the differences between treatments
fell between a logy (CPM) of —1 and 1. Thus, the majority of
evolved differences in gene expression had modest individual
magnitudes. Based upon our filtering criteria, we observed
271 DE genes in the low sociability vs control artificial selec-
tion treatments (Figure 3A). In the low versus high selection
contrast, we saw 174 DE genes (Figure 3B). In the control
versus high selection contrast, we saw 194 DE genes (Figure
3C). We saw a total of 327 unique DE genes across the three
selection contrasts. Figure 4 depicts the subset of 12 genes
with the largest effect size in the low versus high selection
contrast. Additionally, we found 213 genes DE between the
vial and social arena experience contrast. We also examined
if either sex or experience had an interacting effect with se-
lection and found minimal evidence of genes altering gene
expression in either the sex-by-selection interaction or the
experience-by-selection interaction. Visualizations for each
of these candidate genes are in Supplementary File 3.

Gene curation

We found 33 genes that are associated with relevant pheno-
types, including neuroanatomy, neurophysiology, locomotor
behavior, or circadian rhythm (Table 1). A subset of the 12
genes with the largest effect size is depicted in Figure 5.

Go analysis

Following GO analysis, we identified GO terms that are
deemed as significantly overrepresented in our gene list of
DE and differentially transcribed genes. When looking at all
DE genes in our gene list, we found 60 GO terms overrep-
resented (Table S4). These terms included sensory percep-
tion of mechanical stimulus and synaptic assembly at neu-
romuscular junction. When looking at the DTU gene set,
we found 43 GO terms overrepresented (Table S5), includ-
ing photoreceptor cell axon guidance, regulation of neuron
synaptic plasticity, and regulation of compound eye photore-
ceptor.

Comparison to other social behavior studies

First, of the 56 Drosophila genes orthologous to the human
candidate sociability genes identified by Bralten et al. (2021),
no specific Drosophila orthologs appeared in our list of “dif-
ferentially expressed” genes. However, the family of solute
carrier genes did appear in both lists. Our further analysis fo-
cusing on the 8 independent loci with Drosophila orthologs
also revealed no ortholog that changed consistently across
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in log, (CPM) as obtained by emmeans with their 95% confidence interval. The individual points indicate the log, (CPM) of each sample, where the four

colors are the four lineages of each treatment.

selection conditions in our data (Figure S7). Based on our
simulations, we expected to observe a median of three over-
lapping genes, with the 95th percentile being an overlap of
six genes, by chance alone.

Second, we identified Drosophila homologs of 68 out of
the 115 genes reported by Wang et al. (2022) and found
two genes that appeared in our DE gene list, yellow-c and
CG43066 (Figure S8). Based on our simulations, we ex-
pected to observe a median of five genes with the 95th per-
centile being an overlap of nine genes by chance alone.

Third, of the 212 genes identified by Woodard et al.
(2011), we found four orthologs in Drosophila that were
DE among our contrasts (Figure S9). Based on our simula-
tions, we expected to observe a median of nine genes with
the 95th percentile being an overlap of 14 genes by chance
alone.

Finally, from the list of 1,057 genes identified by Shpigler
et al. (2017), we found 14 orthologs in Drosophila that ap-
peared in any of our low versus high, low versus control, or
high versus control DE gene lists (Figure S10). Based on our

simulations, we expected to observe a median of 45 genes
with the 95th percentile being an overlap of 55 genes by
chance alone.

DTU analysis

Following DTU analysis, we obtained a list of genes (and
their corresponding transcripts) that were differentially tran-
scribed. As a confirmation that our approach was detecting
known sex-specific patterns, we looked at DTU between fe-
males and males and saw 2,631 genes with DTU, including
the known sex determination genes in D. melanogaster (i.e.,
doublesex and transformer). In the low versus high selection
contrast, we saw 191 genes with DTU (Figure 6; Figure S11,
Supplementary Files 4, 5). In the low versus control selec-
tion contrast, we saw 384 genes with DTU, and in the con-
trol versus high selection contrast, we saw 252 genes with
DTU. In total, we saw 619 genes overlap between all three
selection contrasts. When looking at a sex-by-selection inter-
action, we found 14 genes with DTU. When comparing our
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Table 1. Manually curated list of genes with relevant phenotypes.
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FBgnID Gene Estimate p-value Phenotype

FBgn0010222 Nmdmc 0.686 1.45 x 107 Abnormal locomotor behavior and stress response

FBgn0015773 NetA 0.654 .0011 Abnormal neuroanatomy and involved in axon guidance

FBgn0033885 DJ-1a -0.624 1.47 x 107 Abnormal locomotor behavior, neuroanatomy, and dopaminergic
neuron

FBgn0036150 Ir68a -0.518 .0021 Abnormal behavior and involved in sensory neurons

FBgn0030795 ppk28 0.380 5.3 x 107 Abnormal memory, neurophysiology, and taste perception

FBgn0037217 CG14636 0.349 .0016 Abnormal auditory perception

FBgn0031435 Elba2 0.311 .0488 Abnormal locomotor behavior

FBgn0027783 SMC2 -0.285 .0015 Abnormal neuroanatomy

FBgn0016672 Ipp -0.254 8.82 x 107° Abnormal learning in males and abnormal neurophysiology

FBgn0261563 wb 0.241 .0093 Abnormal neuroanatomy

FBgn0003174 pwn -0.223 1.4 x 107 Abnormal neurophysiology

FBgn0266670 Sec§ -0.220 1.5 x 10~ Abnormal developmental rate, neuroanatomy, and size

FBgn0000565 MsrA 0.215 .0170 Involved in neuron projection

FBgn0032701 CG10341 -0.190 .0120 Abnormal neuroanatomy

FBgn0003654 sw 0.189 .0007 Abnormal neuroanatomy, paralytic, and dendritic arborizing
neuron

FBgn0035464 PIG-B -0.188 1.22 x 107 Abnormal locomotor behavior

FBgn0030932 Ggt-1 -0.187 .0018 Abnormal behavior

FBgn0030969 Usp39 -0.176 2.95 x 107 Abnormal locomotor behavior

FBgn0266418 wake 0.167 .0017 Abnormal locomotor, courtship behavior, and abnormal sleep

FBgn0003301 rut -0.144 .0208 Abnormal behavior, locomotor behavior, neurophysiology, and
neuroanatomy

FBgn0034585 Rbpn-5 -0.141 2.36 x 107° Abnormal developmental rate and locomotor behavior

FBgn0052982 CG32982 0.139 9.9 x 107* Abnormal locomotor behavior

FBgn0029992 Upf2 0.138 .0011 Abnormal neurophysiology

FBgn0260635 Diap1 -0.131 5.37 x 1077 Abnormal neuroanatomy, oxidative stress response, larval
neurons, peptidergic neurons, abnormal size, and cell death

FBgn0030352 sicily -0.130 1.27 x 107 Abnormal neuroanatomy and neurophysiology

FBgn0026083 tyf -0.114 1.28 x 107 Abnormal circadian behavior and rhythm and abnormal
locomotor rhythm

FBgn0001316 klar 0.110 .0153 Abnormal locomotor

FBgn0023095 caps 0.108 .0201 Abnormal neuroanatomy and axon guidance

FBgn0039861 pasha -0.0988 .0088 Abnormal neuroanatomy and neurophysiology

FBgn0037574 Coq2 -0.0957 .0016 Abnormal locomotor rhythm

FBgn0024179 wit -0.0858 .0303 Abnormal neurophysiology and neuroanatomy

FBgn0032222 Cox10 -0.0762 .0183 Abnormal locomotor behavior

FBgn0039635 Pdhb -0.0728 .0232 Abnormal locomotor behavior

Note. The list contains FlyBase ID (FBgnID), gene name, low versus high sociability contrast estimate, p-value, and a brief description of phenotypes reported

on FlyBase for different alleles of the gene.

DTU results back to the DGE results, we saw 39 genes that
appear in both the overall DGE list and the overall DTU list
(Figure S12, Supplementary File 6). For none of these com-
parisons did we observe biological ontology processes show-
ing significant over-enrichment. Nonetheless, we observed
that a substantial number of genes with known neuronal
or behavioral functions show evidence of DTU (e.g., lilli,
Pyrokinin 1 receptor, Focal adhesion kinase, Optix, Rat1,
Goosecoid, ben, Endophilin A, wacky, Proctolin, Lar, hatti-
fattener, boule, and Bacchus). A number of genes that influ-
ence circadian rhythm showed DTU as well. One transcript
(¢im-RR/FBtr0333258) of the timeless (tim) gene showed an
average ~4 fold greater abundance of transcript in the low
relative to high sociability treatment. We observed a similar
pattern (albeit with a smaller, 1.25 fold increase in transcript
usage in low versus high sociability) for the Shaker cognate
w transcript, Shaw-RA. Shaw encodes a voltage-gated potas-
sium channel, and its misregulation results in altered loco-
motor rhythms (Buhl et al., 2016). The GABA-B-R3-RG
transcript of the GABA-B-R3 gene showed similar differ-
ences in expression (magnitude and direction) to Shaw, and
knockdown of its function leads to misregulation of sleep
and the circadian clock (Dahdal et al., 2010; Haynes et al.,

2015). In the high sociability treatment, there was modest
upregulation (1.2 fold) of the qur-RC transcript of quiver,
known to interact with shaker, influencing sleep (Koh et al.,
2008). Finally, the low sociability treatment showed a mod-
est increase (~1.2 fold) in the amount of the Ckllbeta-RI
transcript of the CklIbeta gene (Konopka et al., 1991).

Candidate gene validation

Ten of the sixteen candidate genes that we functionally tested
via RNAi-mediated gene knockdown showed significant (ac-
counting for multiple comparison) differences in sociability
(Figure 7, Figure $13). This included several with substantial
effects, most notably Sec5, which showed ~50% reduction
in the sociability score when knocked down. Averaged over
sex, only 6 of these 10 gene knockdowns showed differences
in sociability in the direction predicted by gene expression
changes from the artificial selection experiment (Figure 7).
This is in part due to gene knockdowns for several candidate
genes having sex-specific effects on sociability (Figures S14
and S15). For example, Est-P knockdown females showed
much higher sociability than control females, whereas the
male treatments showed modest differences (Figures S14 and
$15). Notably, CG31231 knockdowns showed an increase
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each treatment.

in sociability in males, and a decrease in females, relative to
their controls.

Discussion

Our overarching goal was to identify genes underlying natu-
ral variation in sociability that ultimately may contribute to
evolutionary changes in this behavior. To this end, we relied
on gene expression data from our artificial selection on so-
ciability (Scott et al., 2022a), followed up by experiments on
knockdowns of top candidate genes to validate their direct
effect on sociability.

Gene expression

Utilizing a linear mixed model framework, followed by
planned contrasts between artificial selection treatments, we
identified 327 genes showing differential expression across
all three selection contrasts, with 174 attributed to the
low versus high selection contrast. While the maximum
(minimum) change in gene expression was 3.98 (—6.59)

in logy (CPM), the majority (159/174) of DE genes showed
more modest changes between —1 and 1 log, (CPM) (Figure
$16). Fold changes in expression, however, are rarely propor-
tional to either phenotypic changes (Dworkin et al., 2009)
or causality. Exclusively between the low versus control and
high versus control DE gene lists, we see 133 DE genes that
overlap between the two contrasts (Figure S17). While it can-
not be stated unequivocally, the fact that many genes, asso-
ciated with a broad array of biological functions, showed
changes in expression is broadly consistent with the under-
lying genetic response being polygenic. That is, gene expres-
sion variation that may modulate sociability in Drosophila
is a result of modest changes in function of a large number
of genes across a diverse set of biological processes.

Among the DE genes, we identified 33 genes with known
effects on neuroanatomy, neurophysiology, or behavior
(Table 1). For example, the SecS protein and its human or-
tholog, EXOC2, are part of the exocytosis complex, which
is involved in membrane traffic within neurons and has crit-
ical roles in neuronal function (Evers et al., 2014; Halim
et al., 2023; Martin-Urdiroz et al., 2016; Murthy et al.,
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2003; Swope et al., 2022; Van Bergen et al., 2020). Similarly,
MsrA encodes a methionine-S-sulfoxide reductase, which is
involved in responses to oxidative stress (Moskovitz et al.,
2001; Roesijadi et al., 2007), and has been linked to neuro-
logical deficits, including autism spectrum disorder (Grove
et al., 2019). There is currently, however, limited informa-
tion about the majority of the most DE genes (Figure 4).
Relevant exceptions include Sdic2 and Obp56b. Although
Sdic2 (Sperm dynein intermediate chain 2) is part of a gene
family assumed to be involved in sperm motility (Yeh et
al., 2012), its human ortholog, DYNC1I2 (Dynein Cyto-
plasmic 1 Intermediate Chain 2), is critical for neurodevel-
opment (Ansar et al., 2019). Obp56b codes for an odor-
ant binding protein, which might be pertinent for social
behavior.

The number of unique replicate lineages (4) for each of the
three artificial selection treatments (low, high, and control),
as well as the high sampling per unique replicate allowed
us to gain some important insights on the degree of shared
versus unique transcriptional responses to selection. For in-
stance, the gene Sdic2 demonstrated a substantial change
in magnitude between treatments, where three of four low-
sociability lineages showed a consistent reduction in gene ex-
pression relative to the control and high-sociability lineages.
One low sociability replicate lineage, however, showed no

change (Figure 4). Do these results suggest that Sdic2 has a
causal role to play, but that the sampling of allelic variation
influencing gene expression was not captured in this repli-
cate lineage (i.e., due to the interaction of selection-drift)? Or
was it related via linkage disequilibrium with an unknown
causal change, where recombination (along with selection-
drift) resulted in the observed pattern? Further studies link-
ing lineage-specific changes in allele frequencies with gene
expression changes will provide important insights into the
potential for heterogeneous response to selection in terms of
what alleles are captured by selection.

Global variation in gene expression from adult heads
among lineages (Figure 2) shows the expected pattern of sex-
biased gene expression, and relatively modest aggregation of
the low-sociability lineages. One possible explanation for the
modest changes in the overall expression profiles, and a lim-
itation of our experiment, is that relevant changes in gene
expression associated with evolutionary changes in sociabil-
ity can occur during brain development, but (at least at the
transcript level) may not vary substantially in adults. While
this would reduce the number of candidate genes identified,
it is valuable, as even identifying genes that show differential
expression due to changes during brain development across
the treatments provides insight into the biological processes
of interest.
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The role that alternative splicing plays in mediating the
generation of phenotypic variation and contributing to
adaptive divergence is becoming increasingly clear (Singh &
Ahi, 2022; Verta & Jacobs, 2022; Wright et al., 2022). From
our analysis, we identified hundreds of genes demonstrating
DTU across the sociability treatments (Figure 6, Figure S11,
Supplementary Files 4 and 5). In some cases, like Sdic2, it
may be that DTU drives overall changes in gene expression,
as in this gene, one of the transcripts (FBtr0345925) is not
expressed in any of the low sociability treatment samples
(Figure 6). Many of the genes that showed evidence of DTU
have known neuronal and behavioral functions, including at
least five genes (tim, Shaw, GABA-B-R3, qur, and Ckllbeta),
with known circadian or sleep-related phenotypes when mis-
regulated. While the mutational target size for variation in
circadian rhythm in Drosophila may be greater than previ-
ously assumed based on the “core” clock genes (Harbison
et al., 2019; Kumar et al., 2021), this set of genes may sug-
gest variation in an, as of yet unknown, regulator of splic-
ing influencing variation in sociability, acting pleiotropically
with circadian rhythm. In humans, there is a known asso-
ciation between disruption in circadian rhythms/sleep and
dysregulation of various social behaviors, although with-
out a clear understanding of causality (Grandin et al., 2006;
Kohyama, 2014; Walker et al., 2021). Despite the known
functions of many of the genes that show DTU, we did not
observe significant enrichment of biological processes for
the sets of genes for which we identified DTUs during GO
analysis.

Candidate gene validation

Ten of the 16 genes that we tested via RNA interference
showed significant effects on sociability (Figures 7 and S13).
This proportion is similar to ones in comparable studies. For

example, in our related work on another social behavior, sex-
ual aggression, four of seven candidate genes tested showed
significant effects on male sexual aggression toward females
(Scott et al., 2022b). Intriguingly, however, 4 of the 10 genes
with significant effects on sociability did so in the opposite
direction than we predicted based on the gene expression
data (Figure 7). Unlike the gene expression data, however,
which we acquired from adult heads, the candidate gene
tests, we performed involved knocking down genes broadly
throughout the nervous system both in adults and during de-
velopment. With respect to our experimental design for test-
ing candidate genes, in all crosses using RNAI strains from
the TRiP collection, the genetic background of the control
genotypes was the same as the experimental RNAi genotypes
(with the exception of the RNAI construct itself). However,
RNAI strains from the VDRC collection had a different ge-
netic background from the TRiP collection. As such, in ad-
dition to the RNAIi construct itself, there were also overall
genetic background differences from the controls. As dis-
cussed in the methods, this was done on purpose to avoid
having individuals who were homozygous or hemizygous
for a mutant allele in the white gene, which influences nu-
merous behaviors. The downside of this approach was that
there was potential for background-dependent effects that
could confound interpretation with these strains (de Belle &
Heisenberg, 1996; Mullis et al., 2018; Taylor & Ehrenreich,
2015). However, we did not see any overall differences in
patterns between our results from the TRiP or VDRC col-
lections.

There are limits to what global gene expression differ-
ences as a “snapshot”—in our case in adult heads—inform
us about causal influences of individual genes on trait varia-
tion. Correlation between mRNA and protein expression is
generally strong and positive (~0.6 in Drosophila), but less
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than 1. These represent readouts of changes associated with
variation in sociability, but do not capture all relevant varia-
tion in expression occurring in the adult brain (both tempo-
rally and anatomically), let alone all evolved changes associ-
ated with the developing brain and nervous system. The re-
sponse to artificial selection starting with a genetically vari-
able population is likely polygenic. Individual allelic variants
likely have modest impacts, and it is aggregate effects of al-
leles that result in substantial phenotypic changes. As such,
it is likely that some differences in gene expression associ-
ated with artificial selection are correlated changes, and the
magnitude of expression differences does not necessarily re-
flect phenotypic impact (Dworkin et al., 2011, 2009). The
consequence of this is that an unknown proportion of DE
genes do not directly mediate sociability. Despite such limi-
tations, these approaches provide insight and identify candi-
date genes for further research on the genetic basis of natural
variation in sociability, even when, as in our case, they can
provide some confusing results when validating genetic ef-
fects.

Natural genetic variation in sociabiliity

Despite over 500 million years of evolution, there remains
considerable shared gene function involved with specific bio-
logical processes throughout animals. This includes core as-
pects of development, such as the shared roles of the Hox
genes in anterior-posterior patterning and positional iden-
tity, co-option of Pax6 (eyeless) and Distal-less orthologs
during the repeated evolution of complex eyes and limbs
across taxa (Kozmik, 2005; Panganiban et al., 1997; Quiring
et al., 1994), shared role for orthologs of tinman in heart
development (Bodmer, 1995), and numerous genes involved
with nervous system development that appear to be shared
across phyla (Freeman & Doherty, 2006; Holland et al.,
2013; Lichtneckert & Reichert, 2005). Despite rapid evo-
lution of primary sex-determination signals, many species
across multiple phyla utilize doublesex/mab3 genes (albeit a
diverse gene family) as part of the sex-determination cascade
(Bachtrog et al., 2014; Haag & Doty, 2005; Kopp, 2012).
Taken together, these findings suggest re-utilization or ho-
mologous functioning of gene pathways in these processes,
despite extensive evolutionary diversification being com-
mon for many phenotypes. Despite some distinct features
of behaviors, there is some tantalizing evidence for shared
function of genes related to feeding/foraging (Fitzpatrick &
Sokolowski, 2004), circadian rhythm (Chong et al., 2012),
and more recently, for aspects of social behavior shared be-
tween hymenopterans (arthropods) and humans (chordates)
(Liu et al., 2016; Shpigler et al., 2017; Wang et al., 2022).
As discussed in the sections above, orthologs of several of
our candidate sociability genes have been linked to social
behavior in humans. However, our formal comparisons be-
tween our study and a few other relevant studies on the ge-
netics of social behavior (Shpigler et al., 2017; Woodard et
al., 2011) did not reveal more shared genes than expected
by chance, based on our simulations (Figures S6-S9). The
most likely explanation for these results is that social be-
havior is a broad category, which includes all types of in-
teractions among conspecifics. Examples include parameters
of social networks (Bentzur et al., 2021; Schneider et al.,
2012; Wice & Saltz, 2021), inter-individual distance (Simon
et al.,, 2012), social effects on oviposition (Bailly et al.,
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2023; Fowler et al., 2022), nursing behavior in honey bees
(Shpigler et al., 2017), and effects of social isolation (Wang
etal.,2022). Effectively, there are additional challenges in es-
tablishing comparisons among seemingly similar behaviors
across taxa, as compared to anatomical traits like hearts and
eyes.

We have deliberately chosen to focus our research on a
core aspect of social behavior, sociability, defined as the ten-
dency to affiliate with conspecifics. Specifically, we designed
an ecologically realistic apparatus (Dukas, 2020) in which
flies could decide to join, stay with, or evict others from
food patches (Scott et al., 2022a). Using this measure al-
lows us to quantify how strongly flies prefer to affiliate with
others while feeding or resting. Such preference to engage
in friendly activities with conspecifics is prevalent among
animals, including humans (Allee, 1938; Ward & Webster,
2016; Wilson, 1975). It is thus possible that there are shared
genetic networks underlying the narrowly defined trait of so-
ciability among animals. We would need many more studies
on the genetics of sociability as well as of distinct social-
behavior traits in order to possess a deeper understanding
of the genetic architecture of natural variation in social be-
havior in general and sociability in particular. In ongoing
work in our labs, we investigate the changes in allele fre-
quencies that accompanied the evolution of sociability, val-
idate the effects on sociability of candidate genes identified
in our population genomics analyses, and quantify the dy-
namics of group formation in normal and socially deficient
flies. We also hope that our publicly available data sets will
facilitate research in other labs on the evolutionary biology
of sociability.

Supplementary material

Supplementary material is available online at Evolution.

Data availability

Intermediate data, scripts, and outputs are available
at GitHub: https://github.com/DworkinLab/DrosophilaSo
ciabilityTranscriptomics, and a static version is avail-
able at FigShare: https://doi.org/10.6084/m9.figshare.29
657138.vl. Raw sequence data will be available on
NCBI SRA (BioProject PRJNA1311514, sample accessions
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