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The structure of environmentally induced phenotypic covariation can influence the effective strength and magnitude of natural

selection. Yet our understanding of the factors that contribute to and influence the evolutionary lability of such covariation is

poor. Most studies have either examined environmental variation without accounting for covariation, or examined phenotypic and

genetic covariation without distinguishing the environmental component. In this study, we examined the effect of mutational per-

turbations on different properties of environmental covariation, as well as mean shape. We use strains of Drosophila melanogaster

bearing well-characterized mutations known to influence wing shape, as well as naturally derived strains, all reared under carefully

controlled conditions and with the same genetic background. We find that mean shape changes more freely than the covariance

structure, and that different properties of the covariance matrix change independently from each other. The perturbations affect

matrix orientation more than they affect matrix eccentricity or total variance. Yet, mutational effects on matrix orientation do not

cluster according to the developmental pathway that they target. These results suggest that it might be useful to consider a more

general concept of “decanalization,” involving all aspects of variation and covariation.
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Ml The evolutionary response to natural selection requires pheno-
N typic variation. As such, the mechanisms generating phenotypic

@ variation and covariation (P) are of fundamental importance. Most
N studies focus on the genetic component in P, summarized as the
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Slgenetic covariance matrix G, due to its role in the response to
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sInatural selection as summarized in the multivariate version of the
M breeder’s equation (Lande 1979; Lande and Arnold 1983). Thus,
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M the generation of heritable components of variation, governed by
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I mutation and recombination, is broadly studied. However, non-

; heritable sources of phenotypic (co)variation, often summarized

N through E, remain important for our understanding of both the

J

M magnitude and direction of response to natural selection through

A

i ]its contributions to P (i.e., P = G + E). The basic measure
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of the strength of selection—the selection differential—depends
on P via the covariance between the phenotype and fitness (the
Robertson—Price identity; Robertson 1966; Price 1970). In addi-
tion to its influence on the magnitude of selection, E influences the
response to selection via P as summarized in Lande’s (1979) equa-
tion (AZ = GP~'s). Empirical evidence shows that E is shaped by
genetically defined reaction norms to differences in environment,
and can thus be adaptive and amenable to directional and stabiliz-
ing selection (Hill and Mulder 2010). In a multivariate phenotype,
the covariances in E affect the orientation of the response to se-
lection in addition to its magnitude. Even in cases when E does
not facilitate adaptive evolution directly, it can certainly impede it
and possibly bias its trajectory toward a secondary peak (Burger
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1986). Yet, our understanding of how this environmental covari-
ation is generated during development is incomplete, as is our
understanding of how it evolves.

Mutational and environmental perturbations have often been
utilized to examine how the environmental component of phe-
notypic variation changes, particularly in the context of canal-
ization (Waddington 1952; Dworkin 2005a,b; Levy and Siegal
2008; Hallgrimsson et al. 2009; Hill and Mulder 2010; Paaby
and Rockman 2014; and references therein). A number of these
studies have found an increase in phenotypic variance in response
to perturbations, often attributed to decanalization, and due in
part to a release of cryptic genetic variation (Dworkin 2005a,b;
Paaby and Rockman 2014; and references therein). Yet, both in-
creases and decreases of environmental variance have also been
observed without the release of genetic variation (Debat et al.
2006; Dworkin and Gibson 2006; Debat et al. 2009; Hallgrimsson
et al. 2009). Most studies, however, have examined the effect of
mutational perturbations on the variance of a trait or on the to-
tal variance across several traits (e.g., Dworkin 2005a; Levy and
Siegal 2008), whereas in multivariate systems other aspects of
covariation need to be considered.

Covariance matrices are commonly characterized based on
their size, shape, and orientation (Jones et al. 2003; Hohenlohe
and Arnold 2008), as illustrated in Figure 1. Matrix size is often
measured as the total variance in this context (sum of the individ-
ual trait variances) and it quantifies variation overall, irrespective
of how itis distributed among different directions (Fig. 1A; hence-
forth referred to as total variance). The orientation of the matrix
refers to the direction in which the primary axes of covariation
are pointing (Fig. 1B), and is determined by the relative contri-
bution of each trait to each eigenvector. Thus, a change in matrix
orientation reflects a change in the direction in which most of the
variation is concentrated, and therefore a change in the combi-
nation of traits that are more easily attainable through evolution.
The eccentricity of the matrix describes its shape—how much it
deviates from a hypersphere—and it quantifies how evenly the
variation is distributed among the different directions (Fig. 1C),
irrespective of orientation and total variance. A more eccentric
matrix (i.e., more cigar-shaped) means that there is considerably
more variation along the first axis relative to other axes, and there-
fore a fewer trait combinations that are easily attainable. To the
extent that the observed covariation reflects integrating factors,
higher eccentricity reflects a more integrated body plan.

Previous studies provide mixed expectations as to how the
different properties of the covariance matrix might change relative
to each other and relative to mean shape. Moreover, the associ-
ation between changes to matrix orientation and eccentricity has
mostly been studied so far for P and G rather than E. Simula-
tions by Jones et al. (2003, 2004, 2007, 2012) and Revell (2007)
suggest that the orientation of G is more likely to change than

eccentricity under most conditions, including effects due to pop-
ulation size, magnitude, and orientation of mutational correlation
and stabilizing selection, and different modes of directional selec-
tion. In addition, higher eccentricity enhances the stability of the
orientation under most conditions. The magnitude and stability
of eccentricity and total variance, on the other hand, are mostly
influenced by population size rather than mutational correlations
and selection. Empirical studies have found evidence that both
eccentricity and orientation can be either stable or labile across
populations and species at different phylogenetic scales (Arnold
et al. 2008; de Oliveira et al. 2009; Porto et al. 2009; Haber 2015,
2016). Unfortunately, it is not clear to what extent the expecta-
tions from these studies (examining G and P) are relevant to E.
Changes in G reflect a combination of influences from mutation
and other evolutionary forces. The structure of E, on the other
hand, reflects the interaction between the environment and devel-
opment, and different genotypes differ in their sensitivity to the
environment. Thus, while strong directional selection can deplete
genetic covariation (van Homrigh et al. 2007, Walsh and Blows
2009), altering matrix properties of G, it is not yet clear how this
should alter the matrix properties of E as well.

Theory suggests that strong selection, both disruptive and
directional, can lead to an increase in the total variance of E (Hill
and Mulder 2010). Hallgrimsson et al. (2009) postulated that when
the total variance increases due to developmental perturbations,
matrix eccentricity could either increase or decrease, depending
on how the perturbed developmental process contributes to the
original patterns of covariation. Eccentricity would increase with
total variance if the targeted pathway plays a major role in in-
tegrating the measured traits, thus adding variance to the major
axis of covariation. When the perturbed pathway does not con-
tribute much to the major axis of covariation, changes in variance
are distributed among the smaller subsequent eigenvalues, thus
reducing eccentricity. Indeed, empirical studies have found both
increases and decreases of eccentricity with an increase in the
total variance of E (Hallgrimsson et al. 2009). In addition, stud-
ies have found mutational effects on matrix orientation of E that
could not be readily associated with developmental pathways or
mutational effect size (Hallgrimsson et al. 2006; Debat et al. 2009;
Jamniczky and Hallgrimsson 2009). Most studies, however, did
not include a direct comparison of the different properties of E
across a wide range of mutations, or how these properties change
relative to mean shape. Thus, we are left with little understanding
of the lability of E.

Drosophila wing shape is an ideal system to address these
questions, and in particular how mutational perturbations influ-
ence the different aspects of the covariance structure of E. The
development of the wing of Drosophila melanogaster has been a
model system for over 70 years, and it is one of the best genetically
characterized model systems. The extensive set of genetic tools,
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Figure 1. lllustration of the different matrix properties. Ellipses represent 95% confidence interval of a normal bivariate distribution,
and arrows (ellipse axes) represent orthogonal axes of covariaton. Matrices are presented as bivariate for illustration, but the principles
are the same for multivariate. Ellipses A, B, and C represent a change in only one property each, relative to the ellipse in the middle. (A)
Lower total variance; (B) Perpendicular orientation; (C) Higher eccentricity.

mutant lines, and ability to generate many genetically identical
individuals reared under common environments enables the study
of mutational effects on E. Variation in both size and shape of the
Drosophila wing has a long history of research, and sophisticated
high dimensional representations of shape can be generated in a
high throughput manner (Houle et al. 2003; Pitchers et al. 2013).
Numerous studies have shown that mutational perturbations can
have profound effects on mean shape (Weber et al. 2005; Breuker
et al. 2006; Debat et al. 2006; Dworkin and Gibson 2006; De-
bat et al. 2009, 2011). The influence of mutational perturbations
on variance has been more mixed, with some studies seeing no
effect, some find a general increase (i.e., decanalization; Debat
et al. 2009, 2011), and others finding both increase and decrease
(Debat et al. 2006; Dworkin and Gibson 2006). Some evidence
for the effect of mutational and environmental perturbations on
matrix orientation has been shown in these studies as well. How-
ever, changes to covariance and shape have not been compared
directly, and other aspects of the covariance structure, such as
eccentricity, have not been included before.

To better understand the evolutionary lability of the E matrix,
we used a set of induced mutations measured against a common
coisogenic wild type (Dworkin and Gibson 2006; Debat et al.
2009), as well as a panel of strains derived from natural popu-
lations, and examined the relationship between mean shape and

68 EVOLUTION JANUARY 2017

different aspects of the covariance. Thus, all strains were reared
under the same carefully controlled conditions, and all mutant
lines had the same genetic background, minimizing unknown
sources of variation. We observe that mean shape varies more
freely than the covariance structure, and that matrix orientation
varies more than—and independently from—its eccentricity and
total variance.

Material and Methods

Drosophila STRAINS

Insertional mutations (caused by the insertion of P-elements,
marked with w') in genes involved with the TGF-B and EGFR
signaling pathways were provided from the Bloomington Stock
Center (Table 1). These represent a subset of the alleles that were
first described in Dworkin and Gibson (2006) and were chosen be-
cause of their important roles in the growth, patterning, and shape
determination of the Drosophila wing. All insertions were initially
introgressed into the wild-type lab strain Samarkand (Sam) for at
least 10 generations. The Samarkand genotype was marked with
w~ (white eyes) so flies with insertions could be distinguished
by a rescue of the eye color phenotype. Introgressions were per-
formed by repeated backcrossing of females bearing the insertion
to males of Sam. Prior to generating flies for the experiments
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Table 1. Information about the genotypes included in this study.

Genotype N Wild type Allele Gene Pathway
Sam 175 Sam WT WT -
10385 81 Sam k05115 Epidermal growth factor receptor Egfrk03113 Egfr
10413 88 Sam k07909 Blistered Bsk07909 Egfr
10418 84 Sam k09530 Star SEREL Egfr
10462 89 Sam s3547 spitz spis3 Egfr
10514 83 Sam k02507 Patched P1ck0207 Hh
12772 90 Sam BGO01610 Scribbler shpBG0I1610 TGF-B
14321 89 Sam kg07115 Rhomboid rho*s07115 Egfr
14403 76 Sam kg01923 Thickveins thyke01923 TGF-B
2513 86 Sam Wil Argos aos"!! Egfr
3045 92 Sam md653 Optometer blind/bifid Omb"4>3 TGF-B
6342 92 Sam 225-3 Cross-veinless-2 Gp-22 TGE-B
6372 82 Sam mip-w[+] GTPase activating proteinl Gap1™r-I+] Egfr
MA10 63 MA WT WT - -
MA12 62 MA WT WT - -
MA44 52 MA WT WT - -
MAS3 55 MA WT WT - -
MAG61 56 MA WT WT - -
MA70 57 MA WT WT - -
MAT71 55 MA WT WT - -

NC2 54 NC WT WT - -
NC30 51 NC WT WT - -
NC53 58 NC WT WT - -

NC9 51 NC WT WT - -
NC9% 61 NC WT WT - -

WT, wild type; MA, strains derived from a natural population in Maine; NC, strains derived from a natural population in North Carolina.

described in this study, the alleles were backcrossed to Sam for an
additional four generations to remove any de novo mutations that
had accumulated in those lines (relative to Sam) since the origi-
nal introgression procedure. Selection was based entirely on the
presence of the eye color marker, precluding unwitting selection
for wing phenotypes. All crosses were performed using stan-
dard cornmeal-molasses media, in a 24°C Percival incubator on
a 12/12-h light/dark cycle with 60% relative humidity (Dworkin
and Gibson 2006). The mutant strains used here are part of a larger
unpublished study (Dworkin), and were chosen in part based on
sample size (>50/genotype).

EXPERIMENTAL SETUP

After the additional four generations of backcrossing back to
Samarkand, crosses between each mutation and Samarkand were
set up in vials, allowing females to lay for 2-3 days, so that
egg density was low (generally less than 60 flies/vial). The tem-
perature of the incubator was maintained at 24°C, and monitored
carefully for fluctuations, and vial position was randomized within
the incubator on a daily basis to reduce any possible edge effects.
As larvae crawled out of the media, a piece of paper towel was
added to each vial to provide additional pupation space. After

eclosion and sclerotization flies were separated, on the basis of
eye color, into individuals without the P-element-induced muta-
tions (w-) and heterozygotes for the P-element, and then stored
in 70% ethanol.

STRAINS DERIVED FROM NATURAL POPULATIONS
FROM NORTH CAROLINA AND MAINE
To broaden the comparative basis we included a set of naturally
derived Iso-female lines of D. melanogaster. Since too little is
known about the scale of differences we might expect for matrix
properties, even for fruit flies, it helps to look at the range of
differences found among natural populations. Since shape has no
natural zero (it is on an interval scale), we chose Sam as the point
of comparison for all strains, mutants as well as naturally derived.
The naturally derived lines were established separately in the
summer of 2004 at a Peach orchard in West End, North Carolina
(NC), and in a blueberry field in Cherry field, Maine (MA; cour-
tesy of Marty Kreitman). To generate inbred lines, full-sib mating
was performed for 15-20 generations (Goering et al. 2009; Reed
et al 2010). Flies were reared at 25C (& 1°C) in a 12/12 light/dark
cycle at 50% humidity. We note that a different incubator was used
for these lines (compared to the mutant lines), but preliminary
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analyses for several of the P-element mutant lines demonstrated
highly consistent results with respect to mean shape (not shown).
Seven MA and five NC lines, each with at least 51 males, were
used for this study.

DATA COLLECTION

A single wing from each fly was dissected and mounted in 70%
glycerol (~20 wings per replicate vial on average, >50 wings
per genotype, males only; see Table 1). Wings were imaged at
40 x magnification on an Olympus DP30BW camera mounted
on an Olympus BX51 microscope using “DP controller” V3.1.1
software. All images were saved as greyscale tiff files. To extract
landmark and semilandmark data, we followed a modified pro-
tocol for the use of the WINGMACHINE software (Houle et al.
2003) as detailed in Pitchers et al. (2013). First, we used “tps-
Dig2” (Rohlf 2010) software to record the coordinates of the two
starting landmarks needed by WINGMACHINE. We then used
WINGMACHINE to automatically fit nine B-splines to the veins
and margins of the wing (Fig. 2A). We reviewed each splined
image and manually adjusted the control points as necessary.
The x and y coordinates of 14 landmarks and 34 semilandmarks
(Fig. 2A) were extracted using additional software (CPR) de-
veloped by Marquez and Houle (2014). The data were checked
for visual outliers on scatter plots, and putative outliers were ex-
amined, and either fixed in WINGMACHINE or deleted. The

resulting dataset was then passed on to R for further analysis.

PREPARATION OF DATA
All specimens from all genotypes were superimposed together
using Generalized Procrustes Analysis and projected into tangent
space (function gpagen in the R package geomorph 2.1.1; Adams
and Otarola-Castillo 2013). The semilandmarks were optimized
using minimum Procrustes distance. This resulted in a space of
96 Procrustes coordinates with 58 degrees of freedom (Zelditch
et al. 2004). Replicate effect and the allometric effect of size were
removed from the shape coordinates by fitting a linear model,
excluding their interaction, carried out separately for each geno-
type. The predicted mean configuration was then added back to
the residuals to maintain the differences among genotypic means.
After regression, the dataset was passed on to the LORY pro-
gram for calculating the interpolated Jacobian-based data (Mar-
quez et al. 2012). LORY uses spatial interpolation to evaluate
shape deformation at predetermined evaluation points throughout
the wing. It starts by creating a tessellated grid, with the landmarks
and semilandmarks as the vertices (Fig. 3A). The centroids of the
resulting triangles are considered the evaluation points. Given an
interpolation function, it then calculates the Jacobian matrix that
describes the shape deformation at each point (e.g., Fig. 3B). The
log-transformed determinant of the Jacobian matrix quantifies the
amount of expansion or contraction at each evaluation point rela-
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tive to the mean configuration. Thus, the interpolation takes into
account information from the whole configuration of landmarks,
as well as from the rest of the sample through the mean config-
uration, while quantifying local shape changes. The Procrustes
coordinates are mathematically transformed from a single multi-
dimensional trait into a multivariate set of traits. Just like inter-
landmark distances (and unlike the Procrustes shape variables),
each of the LORY variables can be interpreted independently.
The whole dataset can thus be analyzed using conventional mul-
tivariate techniques (e.g., PCA, multivariate regression), yielding
results that are more easily interpretable as well (Marquez et al.
2012).

The interpolation function allows the researchers to incor-
porate and test an explicit model for the distribution of shape
changes across the configurations, rather than relying solely on
the Procrustes superimposition. The covariance matrix from the
Procrustes residuals is modified based on that explicit model. The
most common interpolation function used in geometric morpho-
metrics studies is the thin plate spline (TPS), which assumes the
object is rigid and therefore penalizes local deformations more
than global ones. In this study, we compared TPS with another
interpolation function implemented in LORY, the elastic body
spline (EBS), which assumes the object is elastic and penal-
izes local deformations less than global ones (Marquez et al.
2012). Therefore, like the Procrustes superimposition, TPS tends
to spread the variation more globally than EBS. Because TPS
and EBS make different assumptions about the distribution of
variance among landmarks, they also make different assumptions
about the integration pattern of the wing. EBS largely implies
less integration and more compartmentalization. For this study
system, we consider EBS to be a more suitable model a priori,
because the development of the fruit fly wing has been shown by
most studies to proceed in a relatively compartmentalized manner
in which variation tends to be locally contained (Zecca and Struhl
2002; Barrio and de Celis 2004; Cook et al. 2004; Martin and
Morata 2006; Ziv et al. 2012; cf. Klingenberg and Zaklan 2000
and Debat et al. 2003).

Each of the three datasets—the Procrustes coordinates and
the LORY variables based on TPS and EBS—was reduced to its
first 30 dimensions using Principal Component Analysis, covering
99% of the variation in the data (Fig. S1). All subsequent anal-
yses, including estimation of the covariance matrices, are based
on these PCA scores. Thus, we have three sets for each of these
measures: mean shape distances, total variance, covariance dis-
tances (i.e., differences in orientation), and eccentricity. However,
results based on Procrustes data were highly correlated with the
Jacobian-based data, using both TPS and EBS (Figs. S2 and S3).
Therefore, we chose to present below only results based on EBS,
and provide results for the other two datasets in the supplemen-
tal material. Thus, for Drosophila wing shape, using the LORY
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1.0 mm

Figure 2. (A) A representative wing image with fitted splines and the location of landmarks and semilandmarks along them. (B)
Individual variation in the sample (gray) relative to Sam (black), mutant means (orange), and means for naturally derived lines (purple).

variables did not make a substantial difference (compared to sim-
ply using Procrustes residuals). However, this could change for
other cases, depending on the specific covariance structure of any
given set of configurations (see examples in Marquez et al. 2012).

QUANTIFICATION OF VARIATION AND COVARIATION
Mean shape distances were calculated as the Euclidean distance
for both the interpolated data and the Procrustes-based data. Since
the Procrustes data were projected to tangent space after super-
imposition (see above), this is equivalent to Procrustes distance.
Variance-covariance (VCV) matrices were quantified based on
their total variance, shape, and orientation (see Fig. 1). Total vari-
ance is the trace of the matrix (i.e., sum of its eigenvalues). Ma-
trix shape was characterized based on its eccentricity (Jones et al.
2003), and calculated as the ratio of the largest eigenvalue to
the total variance, which is the inverse of Kirkpatrick’s (2009)
effective number of dimensions (Kirkpatrick 2009):

P
1
Eccentricity = — » N
Where ), is the largest eigenvalue, \; are the remaining ith eigen-

values, and P is the number of variables in the VCV matrix. In

addition, we calculated eccentricity as the relative standard devi-

ation of the eigenvalues (rSDE), also known as integration level
(Van Valen 1974; Pavlicev et al. 2009a; Haber 2011). As de-
veloped originally by Van Valen (1974) for covariance matrices,
rSDE is also scaled by the total variance, thus measuring matrix
shape only (Haber 2011, 2016). However, rSDE yielded essen-
tially the same results as the above measure of eccentricity (Figs.
S4 and S13), and will not be considered here further.

Similarity in matrix orientation was quantified using Ran-
dom Skewers (Cheverud et al. 1983; Cheverud and Marroig 2007,
Marroig et al. 2011), which measures the average similarity be-
tween two matrices in their response to random unit vectors.
We used 5000 random vectors drawn from a normal distribu-
tion with mean O and variance 1, normed to unit length (Mar-
roig et al. 2011). A distance metric was then calculated as v (1
— r%), where r is the Random Skewers value for that pair of
matrices, and normalized using Fisher’s z-transformation (Jam-
niczky and Hallgrimsson 2009). In accordance with previous
studies, this metric is referred to here as “covariance distance.”
Two other distance metrics were calculated as well: a modifi-
cation of Krzanowski’s (1979) metric following Zelditch et al.
(2006), and the relative eigenvalues metric of Mitteroecker and
Bookstein (2009). However, these two methods proved unstable
for our dataset under resampling, yielding unreliable confidence
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B

@ significant contraction

+ non-significant contraction
significant expansion

non-significant expansion

Figure 3. lllustrating the LORY method for interpolating shape changes from Procrustes data of genotype Bsk979%9_ (A) The tessellation

scheme for choosing evaluation points. The landmarks and semilandmarks (dots) are used as vertices. The centroids of the resulting

triangles (crosses) are the final evaluation points. (B) Shape differences between the genotype mean and Sam inferred by calculating the
Jacobians around each evaluation point, scaled by 100 (crosses and crossed circles). Bars represent the direction and change of differences
between Sam and the sample mean at the landmarks and semilandmarks based on the Procrustes data, scaled by 10X.

intervals. At the same time, their estimated values followed the
same pattern as Random Skewers (see online Supporting Infor-
mation). Moreover, Random Skewers is the only method of the
three that is related to evolutionary theory (Hansen and Houle
2008). Therefore, we present below only results based on Random
Skewers.

Confidence intervals for shape distances, total variance, and
eccentricity, were estimated using a nonparametric bootstrap pro-
cedure with a BCa correction (DiCiccio and Efron 1996; Carpen-
ter and Bithell 2000) using 999 iterations. The BCa correction
was necessary because the pseudo value distribution is expected
to be biased upward when the statistic is bounded by zero, and to
depend on its mean when bounded by both zero and one. These
confidence intervals were used for evaluating significant differ-
ences as well. Confidence intervals for covariance distance were
estimated using a Jackknife procedure. Each Jackknife pseudo
value was calculated by leaving out one specimen in one of the
two samples that are being compared. The confidence interval
was calculated as the 95% of the Jackknife distribution, with-
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out a bias correction. The Jackknife was preferred in this case
because the bootstrap (both parametric and nonparametric) con-
sistently resulted in distributions that were highly biased upward,
often excluding the observed value, invalidating the BCa correc-
tion. This is a commonly found phenomenon in similar studies
and has not yet been properly addressed in the literature to the
best of our knowledge. Here we found that Jackknife without
a bias correction provided fairly symmetric distributions around
the observed values with reasonably wide confidence intervals,
whereas the bias-corrected jackknife yielded extremely narrow
intervals that often excluded their observed value (i.e., they were
“overcorrected”).

To further compare covariance changes with shape changes
we used Principal Coordinates Analysis to generate a shape space
and a covariance space, based on all pairwise distances. In each
of these spaces, genotypes are located based on how differ-
ent they are from each other in either shape (i.e., shape space)
or matrix orientation (i.e., covariance space). The two spaces
where then superimposed together using a symmetric Procrustes
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Table 2. Matrix properties of all genotypes, and their distance from Sam in terms of matrix orientation (covariance distance) and mean

shape (shape distance).

Covariance

Genotype Total variance rSDE Eccentricity® distance® Shape distance
Sam (wild type) 0.13 (0.11,0.15) 0.27 (0.26,0.28) 0.21 (0.17,0.23) - -

aos™!! 0.12 (0.11,0.15) *0.35 (0.28,0.40) 0.34 (0.25,0.42) 0.57 (0.56,0.58) 0.25 (0.22,0.29)
Omb™"d653 *0.17 (0.16,0.20) 0.28 (0.27,0.29) 0.22 (0.19,0.25) “0.68 (0.67,0.69) “1.23(1.19,1.27)
Ep=R 0.12 (0.10,0.14) *0.29 (0.28,0.30) 0.22 (0.18,0.26) 0.46 (0.45,0.47) *0.22 (0.19,0.25)
Gapl™mir-vi+] *0.11 (0.10,0.12) 0.29 (0.27,0.30) 0.24 (0.19,0.29) *0.58 (0.57,0.59) *0.42 (0.39,0.45)
Egfrk0>115 0.12 (0.11,0.14) 0.30 (0.27,0.31) 0.24 (0.19,0.27) 0.51 (0.51,0.53) 0.23 (0.20,0.25)
Bsk07909 0.13 (0.12,0.14) 0.30 (0.27,0.31) 0.26 (0.20,0.31) 0.57 (0.57,0.58) *0.63 (0.60,0.65)
ISR 0.10 (0.09,0.12) 0.29 (0.26,0.30) 0.22 (0.19,0.27) 0.44 (0.43,0.44) *0.13 (0.11,0.14)
s 0.10 (0.09,0.11) 0.27 (0.26,0.27) 0.21 (0.17,0.24) 0.52 (0.51,0.52) 0.38 (0.34,0.41)
P1ck02507 *0.11 (0.10,0.12) 0.28 (0.25,0.28) 0.22 (0.18,0.25) *0.55 (0.54,0.56) *0.54 (0.51,0.56)
sbpBC01610 0.11 (0.10,0.13) 0.27 (0.27,0.27) 0.19 (0.17,0.19) 0.50 (0.50,0.51) 0.37 (0.34,0.40)
rhoe07113 0.10 (0.09,0.11) 0.28 (0.27,0.28) 0.21 (0.17,0.22) *0.39 (0.39,0.40) 0.17 (0.14,0.19)
thvkg01923 0. 10 (0.09,0.12) “0.30 (0.28,0.30) 0.23 (0.19,0.26) 0.61 (0.60,0.61) “0.30 (0.27,0.33)
MA10 0.15 (0.13,0.18) 0.35 (0.31,0.38) 0.30 (0.23,0.40) 0.66 (0.65,0.67) 1.00 (0.96,1.04)
MAI12 0.15 (0.13,0.16) 0.34 (0.31,0.36) 0.29 (0.22,0.36) 0.59 (0.58,0.60) 0.96 (0.92,0.99)
MA44 0.15 (0.13,0.18) 0.34 (0.30,0.36) 0.28 (0.21,0.36) 0.58 (0.57,0.59) 0.91 (0.87,0.94)
MAS53 0.17 (0.15,0.20) 0.33 (0.31,0.34) 0.28 (0.21,0.34) 0.62 (0.61,0.63) 1.04 (0.99,1.08)
MAG61 0.13 (0.12,0.15) 0.35 (0.32,0.36) 0.29 (0.23,0.34) 0.69 (0.67,0.69) 1.15(1.11,1.18)
MA70 0.12 (0.10,0.14) 0.30 (0.28,0.30) 0.22 (0.18,0.23) 0.71 (0.70,0.72) 1.11 (1.08,1.14)
MA71 0.17 (0.15,0.21) 0.30 (0.29,0.30) 0.22 (0.19,0.22) 0.69 (0.68,0.70) 1.41 (1.36,1.45)
NC2 0.12 (0.11,0.13) 0.28 (0.28,0.28) 0.20 (0.17,0.21) 0.82 (0.81,0.83) 1.15 (1.12,1.19)
NC30 0.12 (0.10,0.15) 0.29 (0.29,0.29) 0.21 (0.18,0.22) 0.72 (0.71,0.73) 0.89 (0.86,0.92)
NC53 0.13 (0.11,0.17) 0.31 (0.28,0.31) 0.22 (0.18,0.23) 0.81 (0.80,0.82) 1.06 (1.03,1.09)
NC9 0.15 (0.13,0.19) 0.39 (0.32,0.48) 0.37 (0.28,0.51) 0.73 (0.72,0.75) 0.54 (0.49,0.58)
NC94 0.21 (0.19,0.24) 0.44 (0.37,0.48) 0.42 (0.34,0.48) 0.98 (0.97,0.99) 1.02 (0.97,1.07)

All measures are based on Jacobians, using EBS, and are therefore proportional to the mean configuration of that genotype. Numbers in parentheses are

95% confidence intervals.

*Confidence interval excludes the estimate for Sam; for mutant strains only.
2@Measured as the ratio between the largest eigenvalue and the total variance.

bpifference in orientation based on random skewers.

superimposition including scaling (function protest in R package
vegan 2.0-10; Oksansen et al. 2013). The superimposition ensures
that the two spaces are comparable in terms of both magnitude and
direction of change, just as it does with landmark configurations
(Peres-Neto and Jackson 2001). The sum of squared deviations
between the two spaces after superimposition provides a mea-
sure of correlation between them. In addition, we calculated the
disparity of mutants and naturally derived strains—for shape and
covariance—as the sum of variances of their respective scores
in the joint space, including all 20 PCoA axes. Although the
configurations are scaled by their respective centroid size during
the superimposition, the protest function then rescales the rotated
configuration (the covariance space in this case) proportionally
to the target configuration (the shape space in this case) so that
their size (total variance) in the joint space is comparable but not
necessarily the same. This allows us to evaluate the disparity of
one space relative to the other.

We used MANOVA (Pillai’s A) to test the effect of the devel-
opmental pathway on the mutants’ PCoA scores. As mentioned
above, each genotype involved one mutation that targeted either
the TGF-B or the EGFR signaling pathway (see Table 1). This
analysis allowed us to test whether mutations clustered based on
the pathway they targeted.

To estimate the effect of the high dimensionality of our data
on sampling variance, we repeated all analyses using a reduced
dataset, for which we kept only the 12 landmarks and omitted
all semilandmarks. This dataset had 20 degree of freedom (12 x
2-4), which is less than half our smallest sample size (45). This
reduced dataset yielded very similar results as the full dataset,
for all properties, in terms of both the observed values and the
confidence intervals (Figs. S5-S7). The fact that the confidence
intervals are similar is especially relevant here, indicating directly
that sampling variance is not affected by reducing the dataset
dimensionality from 56 to 20.
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Figure 4. Mean-shape distance from Sam plotted against the to-
tal variance within each strain. Bars are 95% confidence intervals.
Dashed lines represent values for Sam. Labeled mutants are men-
tioned in the text.

All analyses were carried out in R 3.2.4 (R Core Team
2016). All scripts and data will be made available on DRYAD
(doi:10.5061/dryad.3b426) and on the Dworkin lab github
repository (https://github.com/DworkinLab/HaberDworkin_
Evolution2016).

Results

BOTH MEAN SHAPE AND MATRIX ORIENTATION
VARY CONSIDERABLY AMONG MUTANT AND
NATURALLY DERIVED STRAINS

All mutants differ significantly in their mean shape from the Sam
wild type (Table 2 and Fig. 4; see also Fig. S8), as determined
by the lack of overlap between their confidence intervals and the
benchmark of zero distance from Sam (horizontal dashed line in
Fig. 4). Most mutant strains are more similar to the Sam wild type
than any of the naturally derived strains. Yet, two of the mutants
(genotypes 3045 and 10413, genes Omb™¥5>3 and Bs<7°% respec-
tively) show magnitudes of shape change as extreme as any of the
naturally derived strains, suggesting that the range of mutations
included here likely provide a reasonable representation of what
we might observe in nature. The orientation of the covariance
matrix of all mutant strains also differ significantly from Sam
(Table 2 and Fig. 5): none of the covariance distances include
zero in their confidence interval. Unlike mean shape, however,
most of the mutant strains differ from Sam just as much as the
naturally derived strains do.

SEVERAL MUTANT STRAINS HAVE LOWER
ENVIRONMENTAL VARIANCE THAN THEIR WILD
TYPE

Most mutations resulted in a lower total variance than their coiso-
genic Sam wild type (Table 2 and Fig. 4). Six of the 12 mutant
strains exclude the estimate for Sam from their confidence inter-
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Figure 5. Mean-shape distance plotted against covariance dis-
tance (i.e., difference in matrix orientation; estimated by Random
Skewers), relative to Sam. Bars are 95% confidence intervals. La-
beled mutants are mentioned in the text.

Table 3. Nonlinear regression of shape distances on covariance
distances (relative to Sam).

Estimates t value P value
Intercept (a) -2.83(4.75,-0.92) -3.07 0.0057**
Linear term (b) 9.07 (3.20, 14.94) 3.21 0.0042%*
Nonlinear term (¢) -5.19 (-9.57,-0.81) -2.47 0.022%

Based on Jacobians, using EBS, and are therefore proportional to the mean
configuration of that genotype (see Table 2). Numbers in parentheses are
95% confidence intervals.

Model: Y = a + bX + cX?; Y is shape distance; X is covariance distance.
Tested sequentially so that the nonlinear term is added to the linear term.
Residual standard error: 0.25 on 21 degrees of freedom.

Multiple R-squared: 0.63, Adjusted R-squared: 0.60.

F-statistic: 18.29 on 2 and 21 DF, P-value: 2.52 x 107°.

val (Table 2), thus indicating a significant difference. Two of the
significant strains (Ptck0237 | tiey*s01923) are part of the TGF-B path-
way, and the other four (Gapl mip-wl+] | Gk09530 ppy k07115 spi53547)
contribute to EGFR signaling (Table 1). The only strain that has
substantially and significantly higher total variance is Omb™43,
which also differs greatly in its mean shape. In contrast, the total
variance within each of the naturally derived strains is mostly
higher than the total variance within Sam. In addition, there is a
positive linear relationship between the total variance within the
mutant strains and their shape distance from Sam (Fig. 4).

A POSITIVE NONLINEAR ASSOCIATION BETWEEN
CHANGES IN MEAN SHAPE AND MATRIX
ORIENTATION

There is a positive association between covariance distance (i.e.,
difference in matrix orientation) and shape distance (Fig. 5), rel-
ative to Sam. This relationship, however, is not linear (Table 3),
suggesting that the covariance distance is somewhat bounded at
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Figure 6. The first two axes of the covariance space superim-
posed onto shape space. Both spaces are based on all pairwise
distances. Solid gray lines indicate the deviation between the two
spaces for a given genotype. (A) All genotypes; (B) Mutants only,
including Sam. Mutants that affect the TGF-8 pathway are marked
by t. All other mutants affect the EGFR pathway. nWT, naturally
derived wild types; mt, mutants. Labeled mutants are mentioned
in the text.

the upper range. These findings are further supported by com-
paring the shape and covariance PCoA spaces (Fig. 6, see also
Figs. S9-S12). These spaces are based on all pairwise compar-
isons, rather than comparing to Sam only, and were superimposed
for comparability. The superimposition scales the two spaces to
a common scale, centers, and rotates them so that they are com-
parable in terms of both magnitude and direction of change. The
gray solid lines indicate the deviation between the two spaces. The
sum of squared deviations between the two spaces is 0.669, and
the coefficient of determination is small yet significantly different
from zero (R* = 0.33; P < 0.001 with 999 permutations). Thus,
the two spaces are substantially different from each other, but not

unrelated. The first two PCoA axes cover 58% of the variation
in the joint space (Fig. 6), while the third and forth axes cover
only 10 and 6% of the variation, respectively. The first PCo1 axis
mostly separates the naturally derived strains from the mutants
and Sam, for both shape and covariance. The disparity of shape
is more than twice as large as that of covariance (i.e., orientation
differences) (0.042 and 0.020, respectively; calculated over all 20
PCoA dimensions that resulted in eigenvalues larger than zero).
The disparity of both shape and covariance is larger for the natu-
rally derived strains than for the mutants (Fig. 6A). The mutants
do not cluster by pathway (Fig. 6B), for either shape (Pillai’s A =
0.44, P = 0.24) or covariance distance (Pillai’s A = 0.34, P =
0.52).

MOST MUTATIONS DO NOT INFLUENCE MATRIX
ECCENTRICITY, DESPITE EFFECTS ON MEAN SHAPE,
TOTAL VARIANCE, AND MATRIX ORIENTATION

Most of the mutations do not have a substantial effect on the
eccentricity of covariation (i.e., matrix shape), and include the
estimate for Sam well within their confidence interval (Table 2).
In addition, there is no clear relationship between eccentricity
and total variance (Fig. 7A). The only mutations that caused a
significant change in eccentricity are aos"'!, which increases rel-

bBGOI6I0 which decreases relative to Sam

ative to Sam, and sb
(genotypes 2513 and 12772, respectively). These mutations do
not differ much from Sam for total variance and mean shape
(Fig. 7 and Table 2). Omb™%3  on the other hand, differs signifi-
cantly and substantially from Sam in its total variance and shape
(see Table 2), and yet is very similar in its eccentricity to Sam.
Most of the naturally derived strains have a higher eccentricity
than Sam (Fig. 7A), showing a greater difference from Sam than
the mutants do. Similarly, there is no clear association between
eccentricity and shape distance from Sam (Fig. 7B), or between
eccentricity and covariance distance (i.e., orientation differences)
from Sam (Fig. 7C). The same picture emerges when eccentricity
is calculated using the relative standard deviation of the eigenval-
ues (rSDE; Table 2 and Fig. S13), and based on Procrustes and
TPS data (Figs. S14-S15).

Discussion

The pattern and magnitude of phenotypic covariation remains cen-
tral to selection theory (Robertson 1966; Price 1970; Lande and
Arnold 1983). Although it cannot usually facilitate adaptation by
itself, the environmental component of phenotypic covariation-—E
—can impede and divert the population response to selection
(Burger 1986). Despite the importance of this for understand-
ing evolution, factors that influence the lability of E are poorly
understood. For univariate measures, environmental and genetic
stressors have been shown to increase variance in E in numerous
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Figure 7. The association between eccentricity and (A) total vari-
ance within each genotype, (B) their mean-shape distance from
Sam, and (C) their covariance distance from Sam. Dashed line rep-
resents the eccentricity of Sam. The apparent positive relation-
ship between eccentricity and total variance is no greater than
expected by chance based on parametric simulations. Labeled mu-
tants are mentioned in the text.

situations (Dworkin 2005a; Hallgrimsson et al. 2009; Paaby and
Rockman 2014; and references therein), but little is known about
how such perturbations influence other properties of integration
and covariation.

Using the wing of D. melanogaster as a model system, we
found that mean shape and matrix orientation vary substantially
among the coisogenic mutants, as well as the naturally derived
strains (Table 1 and Fig. 5). By superimposing the covariance
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space onto shape space we were able to compare their distribu-
tion in terms of both magnitude and direction of change and show
that shape has changed to a greater extent than matrix orienta-
tion (Fig. 6). In contrast, mutations had little influence on the
total variance and eccentricity of the matrix. Whereas total vari-
ance is positively associated with mean shape, it is not associated
with eccentricity, nor is eccentricity associated with matrix ori-
entation. Together, these findings suggest that the potential of the
covariance structure to change is more limited than that of mean
shape, and that different properties of the covariance structure can
change independently from each other. Thus, even though these
mutations greatly affect the location of genotypes in morphospace
(i.e., mean shape), the availability of different trait combinations
to natural selection (matrix orientation) is not affected as much.
Moreover, the total amount of variation (matrix size) and its dis-
tribution among the different trait combinations (eccentricity) are
not affected much either. It is worth noting that some of the envi-
ronmental effects (such as rearing temperature and density) were
highly controlled in this study, both within and among strains.
Thus, our experimental design may represent a lower bound for
the environmental contributions to covariation, and the patterns
observed are likely an underestimate of the possible effect sizes.

The common expectation is that mutational perturbations
would cause a disruption to the developmental system, leading to
ahigher variance and greater shape changes (Dworkin 2005b; Hall
et al 2007; Hallgrimsson et al. 2009; Hill and Mulder 2010; and
references therein). Our findings are consistent with the common
expectation in that greater decanalization is indeed associated with
larger changes to mean shape, but surprising in the sense that most
mutants have a lower variance than their coisogenic wild type (al-
beit significant for only 6/12 genotypes), and thus seem to be
more canalized. If we had used linear measurements, we would
have expected to find a positive correlation between the mean
and the variance merely due to scale. However, such a technical
relationship is not expected for Procrustes shape data because all
specimens are scaled by their centroid size during the superimpo-
sition. Thus, the positive association we find likely reflects more
than a technical relationship. In addition, the difference in variance
between strains is not likely to be due to differential survival, be-
cause the individuals within each strain are genetically identical
and viability was high enough for all genotypes. Thus, the de-
crease in total variance within the mutants likely reflects a higher
canalization of wing shape. Dworkin and Gibson (2006) have also
observed such mixed results for mutant strains, using a smaller set
of landmarks. A related study (Debat et al. 2009) showed a more
consistent increase in total variance, even for some of the same
mutations. However, the genetic background of the strains in De-
bat et al. (2009) was Oregon-R (rather than Samarkand), which
has been shown to be more sensitive to mutational perturbations
under some conditions (Chari and Dworkin 2013).
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Increases in the environmental component of phenotypic
variance have been explained in previous studies by a nonlinear
relationship between the trait mean and its underlying develop-
mental parameters (Klingenberg and Nijhout 1999; Hallgrimsson
et al. 2009). The nonlinearity arises from the expectation that the
variation expressed around the mean phenotype can vary for dif-
ferent phenotypes, reflecting different levels of canalization. A
steeper slope around a given phenotype implies a greater amount
of variation, and therefore less canalization, associated with that
phenotype. Itis often assumed that when development is perturbed
the mean would shift to a less canalized section on the curve and
express greater variation. It is possible, however, that the mean
would shift into more canalized regions, rather than less canal-
ized, resulting in a decrease of variance rather than an increase
(Hill and Mulder 2010). In other words, Sam is more sensitive to
microenvironmental influences than the mutants and less sensitive
than the natural strains, at least in our study. It is also possible to
have system-wide canalizing factors (such as chaperon proteins;
Rutherford and Lindquist 1998) operating simultaneously, mask-
ing the effects of local perturbations and stabilizing the variance
(Hallgrimsson et al. 2006). Or, the mutations could increase re-
dundancy and complexity thus increasing stability (Hallgrimsson
et al. 2006; Levy and Siegal 2008). All of these possible expla-
nations would be consistent also with the positive association we
found between mean shape changes and total variance.

A possible explanation for the higher variance within the
natural strains (relative to Sam) could be related to the time and
amount of inbreeding among the strains (Whitlock and Fowler
1999; Whitlock et al. 2002). Inbreeding in Drosophila does rep-
resent a form of “genetic stress” as deleterious recessive alleles
are made homozygous (and their effects are phenotypically ex-
pressed), often leading to an increase in environmental variance.
We would therefore expect the natural strains to be decanalized
as well. However, the Sam wild type has also undergone ex-
tensive inbreeding, and is near isogenic (Chandler et al. 2014).
Thus, a satisfactory explanation for this particular observation
eludes us.

In accord with previous studies (Dworkin and Gibson 2006;
Debat et al. 2009; Jamniczky and Hallgrimsson 2009), covariance
matrices of the mutant strains do not cluster according to the de-
velopmental pathway that their underlying mutations presumably
affect. This could point to the complexity of the developmental
system, further supporting the palimpsest model suggested by
Hallgrimsson et al. (2009). It could also mean that these path-
ways do not contribute to the structure of E as effectively and
consistently as previously postulated. A detailed analysis of the
covariance pattern is needed to further investigate the extent to
which the modularity structure of the fruit fly wing follows a priori
developmental models, and how it is disrupted by developmental
perturbations.

It is difficult to compare differences in eccentricity to differ-
ences in orientation directly because of their different dimension-
ality and somewhat different method for calculating confidence
intervals. However, mutant eccentricity varies from that of Sam
within a smaller portion of its possible range (0.2-0.43; 23%)
compared to how much their orientation varies from Sam (0.37—
0.77; 40% without the Fisher’s z-transformation). These findings
are in accord with simulations by Jones et al. (2003, 2004, 2012)
for G, suggesting that eccentricity is likely to vary less than ori-
entation for a given population size under most combinations of
genetic architecture, selection regimes, and phylogenetic scale.
It is also consistent with empirical evidence for P from Haber
(2015, 2016), showing that matrix orientation has varied greatly
among closely related ruminant species, whereas eccentricity has
remained largely the same throughout most of bovid history, and
has only varied within 33% of its possible range among other
ruminants.

As with many studies of covariation, sampling variance could
have a substantial impact on our results, considering the high
dimensionality of the data, and especially on estimates of co-
variance. Several studies (i.e., Hill and Thompson 1978; Meyer
and Kirkpatric 2008; Pavlicev et al. 2009b) have shown that the
leading eigenvector tends to be overestimated due to sampling
variance, and the trailing eigenvalues underestimated. This would
affect eccentricity the most. Simulations carried by Haber (2011)
indicate that eccentricity is only biased (overestimated) for low
values (rSDE < 0.2) with sample sizes lower than 45 and number
of variables 35 or lower. Our sample sizes are all higher than
45, and most are higher than 60, with 56 degrees of freedom,
so largely equivalent to those simulations, and all of our rSDE
values are higher than 0.2. There is no reason to expect other
measures of eccentricity to be affected differently as they are all
very tightly correlated and reflect the same property (the distribu-
tion of the eigenvalues). In addition, the power analysis in Haber
(2011) indicates that increasing sample size above 40 adds lit-
tle to the statistical power of rSDE. Therefore, it is reasonable
to assume that our eccentricity estimates are largely unbiased by
sampling variance. With regards to other properties, mean shape
and total variance are scalars, known to be relatively robust to
sampling (Zelditch et al. 2004). In contrast, matrix orientation
is probably the most sensitive property, but it is impossible to
say how sampling variance would affect it as it depends largely
on the covariance structure itself. However, since sample size is
similar for all mutant lines, its effect should be about the same as
well. Moreover, repeating the analyses with a reduced dataset of
12 landmarks (see Methods), yielded very similar results as the
full dataset for all properties, in terms of both the point estimates
and their confidence intervals (Figs. S5-S7). The fact that the
confidence intervals are similar is informative in this context as it
indicates that the sampling variance is not substantially affected
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by reducing the dataset from 56 to 20. Pitchers et al. (2014) also
found that the number of families (the relevant sample size for
that study) had relatively modest effect on various measures of
matrix properties of G.

To conclude, previous studies have shown an increase in vari-
ance to be clearly associated with decanalization. In this study,
however, we find that mutants altered the orientation of the covari-
ance matrix more often than its total variance. Mutations do not
only affect trait means and variances, but aspects of covariances
as well, though this has not been part of the general formulation
so far. Thus, our study suggests that it might be useful to consider
a more general concept of decanalization.
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Additional Supporting Information may be found in the online version of this article at the publisher’s website:

Figure S1: The proportion of variance explained by each eigenvalue, for all datasets, before and after regression on centroid size.

Figure S2: All pairwise shape (A) and covariance (B) distances based on the interpolated data using the Elastic Body Splines (EBS) and the Thin Plate
Spine (TPS) interpolation functions.

Figure S3: All pairwise shape (A) and covariance(B) distances based on Jacobians and Procrustes data. Jacobians are calculated using the EBS interpolation
function.

Figure S4: Eccentricity, calculated as the inverse of Kirkpatrick (2009)’s effective number of dimensions, compared with the relative standard deviation
of the eigenvalues (rSDE; Pavlicev et al. 2009), based on each of the datasets.

Figure S5: Mean—shape distance from Sam plotted against the total variance within each strain. Based on reduced (12 landmarks) Procrustes data.
Figure S6: Covariance distance (i.e, difference in orientation), estimated by Random Skewers, plotted against mean—shape distance, relative to the Sam
wild type. Based on reduced (12 landmarks) Procrustes data.

Figure S7: The association between eccentricity and (A) total variance within each genotype, (B) their mean—shape distance from Sam, and (C) their
covariance distance from Sam. Based on reduced (12 landmarks) Procrustes data.

Figure S8: Mean-shape distance from Sam plotted against the total variance within each strain, for each of the three datasets.

Figure S9: The first two axes of the covariance space superimposed onto shape space. Based on EBS Jacobians, using Common Subspace for covariance
distance.

Figure S10: The first two axes of the covariance space superimposed onto shape space. Based on EBS Jacobians, using relative eigenvalues for covariance
distance.

Figure S11: The first two axes of the covariance space superimposed onto shape space. Based on Procrustes coordinates, using Random Skewers for
covariance distance.

Figure S12: The first two axes of the covariance space superimposed onto shape space. Based on TPS Jacobians, using Random Skewers for covariance
distance.

Figure S13: The association between rSDE and (A) total variance within each genotype, (B) their mean—shape distance from Sam, and (C) their covariance
distance from Sam. The association between rSDE and other matrix properties, Based on EBS Jacobians, using Random Skewers for covariance distance.
Figure S14: The association between eccentricity and (A) total variance within each genotype, (B) their mean—shape distance from Sam, and (C) their
covariance distance from Sam. The association between eccentricity and other matrix properties, Based on Procrustes variables, using Random Skewers
for covariance distance.

Figure S15: The association between eccentricity and (A) total variance within each genotype, (B) their mean—shape distance from Sam, and (C) their
covariance distance from Sam. The association between eccentricity and other matrix properties, Based on TPS Jacobians, using Random Skewers for
covariance distance.
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